
A

This i s a USER program. Other than requiring that i t conform to submittal and review standards,
no wuality control has been imposed upon this program by DECUS.

The DECUS Program Library i s a clearing house only; i t does not generate or test programs. No
warranty, express or implied, i s made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility i s assumed by these parties i n connection therewith.

FOCAL

HOW TO WRITE
NEW SUBROUTINES

AND
USE INTERNAL ROUTINES

Doug Wrege, Engineering Experiment Station,
Georgia Institute of Technology, Atlanta, Georgia 30318

DECUS NO. FOCAL 8-17

TABLE OF CONTENTS

FOCAL: HOW TO WRITE NEW SUBROUTINES AND USE INTERNAL ROUTINES

ABSTRACT

I . INTRODUCTION

1 1 . ASSEMBLERS, COMPILERS, AND INTERPRETERS

1 1 1 . THE PHILOSOPHY OF FOCAL

A. Text Editing
B. The Multiple Branch Routine
C. Recursion
D. Conclusion

IV. TECHNICAL DETAILS; GENERAL

A. Arithmetic Manipulation
B. Storage - (Core Layout)
C. Holes
D. Moving Bottom

V. TECHNICAL DATA - FOCAL SUBROUTINES

A. Page Zero Reference Locations
B. Text Handling Routines
C. Ut i l i ty
D. Pushdown List Control lers
E. Other Subroutines

VI. LINKS TO FOCAL

A. Functions
B. Links to FOCAL - The LIBRARY Command
C. Debugging

VII. ACKNOWLEDGMENTS

VIII. APPENDIX A

A. A Prescription

IX. APPENDIX B

A. A Few Useful Routines
1 . Argument Evaluator
2, tlBRARY Expansion
3. Function-command Extention

X . APPENDIX C

A. Example of a Recursive Subroutine - EVAL
B. Simplified Flowchart of Subroutine EVAL

XI. APPENDIX D

A. Field One Variable Array
1 . Abstract
2. Requirements
3. Usage

a. Loading
b. Calling sequence

4. Discription

XII. APPENDIX E

A. Disk Variable Storage
1 . Abstract
2. Comments

XIII. APPENDIX F

A. Hints and Kinks Department

FOCAL: HOW TO WRITE NEW SUBROUTINES
AND USE INTERNAL ROUTINES*

DECUS Program Library Write-up FOCAL8-17

ABSTRACT

It i s the aim of this paper to help the user to code specific routines in FOCAL so that his
dialect of FOCAL can be applied to his application (without being forced to understand in
detail a l l the workings of FOCAL). In this way, perhaps, each and every user can make
his particular dialect of FOCAL 'perfect'.

I . INTRODUCTION

Many users have found FOCAL ** to be the answer to their real-time and computational
problems. The language i s extremely powerful and flexible with unique text editing and
debugging features. Although FOCAL i s slow in execution compared to machine language
coding, for most real-time problems or one-time calculations, lack of speed i s not a serious
handicap, Most users wi l l agree that a program can be written, debugged, and executed in
"FOCAL" before the equivalent could even be coded (and/or punched) in any other language.
Additions or changes are easily made.

It wi l l be assumed that the reader has a basic knowledge of PDP-8 processor instructions,. PAL -
mnemonics (see Digital's Smal I Computer Handbook or Introduction to Programming), as well
as a familiarity with the Floating Point Package (DEC-08-YQYA-D). In addition, he should
be familiar with the "FOCAL"** language.

As many users have discovered, the internal workings of FOCAL are an incredibly complex
piece of programming. With the need to interface the computer to specialized equipment for
individual applications, there i s the corresponding need for appropriate software. If FOCAL
could communicate with this equipment, one would have an extremely powerful and flexible
computation and control package. This paper i s an attempt to explain how user developed
software can be interfaced to the basic FOCAL package, without requiring the user to spend
valuable time trying to understand a l l of i t s detailed workings.

Section II wi l l deal with a general discussion of how FOCAL works, in a descriptive fashion.
Section I l l wi l l be concerned with the philosophy of the language. The last few sections wi l l
be more technically oriented toward helping the user actually code his additions. Finally,
several examples and ready coded routines, which may be used to simplify the user's problems,
are included.

*Supported in part by the U . S. Atomic Energy Commission.

**Throughout this paper a "FOCAL" program written in the "FOCAL" language w i l l be
enclosed in quotes. The machine language coding of the FOCAL interpreter wi l l be referenced
by the word FOCAL without quotes.

II . ASSEMBLERS, COMPILERS, AND INTERPRETERS

In general, there are three routes that the programmer can follow for machine execution, Programs
that perform translations are assemblers, compilers, or interpreters; each operate from conceptually
different vantage points.

In a compiler level language, such as FORTRAN, ALGOL, and BASIC, coding i s written in a syntax
close to the way a human thinks. A compiler interprets this and generates an object code which i s
close to machine language. This, in turn, i s translated into actual machine language instructions.
Finally these machine language instructions must be read into core before execution. If any
corrections are to be made to the program (debugging, additions, or corrections), one must recompile
the source coding, read the new object coding in, and finally execute it.

An assembly level language i s inherently closer to machine language than a compiler level language.
The user’s coding i s indeed remote from the way he thinks about formulating a problem (he i s even
forced to think in binary or octal, the machine’s way of formulationg problems). About al l an
assembler lets the programmer do i s use mnemonics (words) and symbols instead of binary numbers.
For example, i n the PAL language, the instruction TAD I TEMP i s assembled as follows from the
definitions:

TAD = lj?$?gf8 /in the assembler’s internal symbol table

I = g4m*

TEMP= fll(d(a’8

/internal symbol table

/user defined in coding

The assembler masks out the first 5 bits from the last mnemonic
i f there are more than one (in this case TEMP); it then ORS the
result with the other mnemonics:

1 km
ti !84m
8c 16’116121
’7 This i s the machine equivalent.

The PAL assembler i s a l i t t le more sophisticated than this, of course, and performs functions a
l i t t le more complicated, but generally an assembler i s incredibly stupid for what i t can do. Note
the similarity between PAL mnemonics and machine language. Throughout the following sections
various mnemonics w i l l be defined so that the PAL assembler can generate instructions compatible
with FOCAL (e.9. GETC = 45& causes the assembler to add this to i t s symbol table).

In an interpretive level language, no machine language coding i s generated for execution. An
interpreter i s essentially a subroutine caller. It contains a subroutine for every conceivable
operation i t thinks the user wishes to perform. If i t cannot understand what the user wants, i t
prints a n error message and waits for the user to make himself clear. Every character that the
user inputs i s stored in core, Upon execution the interpreter “interprets” the program character
by character and calls the subroutine indicated.

FOCAL i s an interpretive level language. In particular, i t i s a recursive interpreter (see
Section 111). That is, unlike FORTRAN, one may call a function from within itself.
Nevertheless, it i s basically a subroutine caller, even though these subroutines may be
incredibly interlocked. It has a subroutine to evaluate arithmetic expressions (EVAL),
subroutines to make it recursive (PUSHJ, PUSHA, etc.), branching routines (SORTJ),
a subroutine to find a certain line (GETLN), one to get a character (GETC), etc. Once
the user understands what a l l these routines do, he can add his own coding in a highly
efficient and powerful manner. Descriptions of these subroutines wi l l be given in later
sections.

1 1 1 . THE PHILISOPHY OF FOCAL

A. Text Editing

Since FOCAL i s an interpretive language, i t must have facilities for manipulation of user
written text.
and editing features, such as WRITE, MODIFY, TYPE, and the ''trace" ("?") function. One
of the main features of the FOCAL interpreter i s the simplicity of concept and power of operation
of the format controlling statements. The user finds a convenient, easily understood way of
controlling the format of his output, regardless of his level of programming experience and
sphistication.

In order to facilitate these manipulations, there are a number of text formatting

Since much of FOCAL execution i s involved in various text decoding routines, FOCAL i s slow
in execution of programs (compared to assembly or compiler language coding). The text handling
routines may be called from the user written assembly language subroutines, and thus are listed
with a short description of their function, in Table 1 .

FOCAL i s concerned with interpreting what the user's text means by specific combinations of
characters, so it must have a flexible means of decoding these characters according to type.
The most efficient way this can be done i s to use a subroutine (SORTC) that compares the
present character with a l i s t . It i s necessary to have the address of the l i s t as an argument for
this subroutine. For example, suppose that i t i s desired to find a text terminator. To do this,
a l i s t i s made of a l l legal terminators (;, carriage return, space comma, etc.), and the value
of the present character (stored in location CHAR) i s compared to the l i s t : i f a match is found,
an index i s set to the l i s t element number, and a normal return i s taken.
found, then another return i s taken.

If a match i s not

B. The Multiple Branch Routine

FOCAL i s i n many ways similar to JOSS2. Al l of the JOSS-like languages incorporate a
"command" in addition to the arithmetic statements available in other languages (ALGOL,
FORTRAN).
new statement, the interpreter (or compiler, in the case of BASIC) can decode the action
required, and thus need not "understand" the whole line before proceeding. This i s an advantage
in a small machine such as the PDP-8, where the paucity of core demands highly efficient coding.

Joss - An Introduction to a Helpful Assistant, Rand Memos 5058-PR July 1966. 2

One of the advantages of the command i s that, using only the first symbol of a

A Unique feature of FOCAL i s the abi l i ty to operate with single-letter abbreviations of the
command. As an example, consider the subroutine that actually selects the command branches
(and i s used for other operations within FOCAL, as well). This routine (SORTJ) i s called with
an argument pointing to the l i s t of characters to be compared and another argument containing
a pointer to a l i s t of associated addresses. FORTRAN programmers might recognize the result
as a sort of character-driven computed GOTO. The calling sequence is:

SORT J
TABLE 1 -1
TAB LE 2-TAB LE,
xxx

/Sort and Branch Routine
/pointer to character l i s t
/difference in addresses of the tables
/return i f not i n table

Absolute addresses are specified in the arguments; hence, tables may be stored between pages.

Since FOCAL refers to l i s t s for i t s decoding operations, it i s often referred to as a table driven
interpreter. A table driven interpreter i s especially suited to addition of new coding, since only one
or two addresses need to be added to a table (l i s t) for a new branch.

C . Recursion

One of the features of FOCAL which makes it so powerful i s that of recursion. Recursion i s the
abil ity of a subroutine to call itself, e.g. FSQT (1 - FSQT(X)). In most compiler level languages
this operation i s carried out by repeating the machine language (FSQT) coding so that one version
of the subroutine can call the other. In these cases the subroutine never really calls itself, rather
it calls a separate identical piece of coding, An interpretive level language cannot afford multiple
identical subroutines for every possiblity, since i t would take too much core.

Consider how a 'normal', nonrecursive subroutine works. Schematically we may divide the sub-
routine into a segment i n which the logical operations are coded and a segment where temporary
values i n the calculation are stored. We can consider the subroutine return to be stored i n this
temporary storage area also. VIZ,

SQT. I return addr. 1 I CODING

Variable
Storage (eval. argument) -------

(take SQTof arg.)

If this hypothetical subroutine were to call another subroutine (as i s normally done in assembly
language), there would be no difficulties provided that the intermediate storage of the two
subroutines are separate.

If the subroutine was to call itself from within i t s own coding, the original intermediate values of
the variables and the return pointer would be overwritten (as the program executes the coding the
second time). If there was a way to use a different intermediate storage area, the original values
would not be lost.

The Push-Down List (PDL) concept involves an intermediate storage area which i s "pushed-down''
(making a new intermediate storage area available) whenever a subroutine i s called and ''popped-
up'' whenever a return occurs. VIZ,

I I CODING

SQT may be in
(eval. argument) argument

(take SQTof arg.)

k- - --- - - - t i

To continue the example, the steps in the evaluation of FSQT l-FCZST(X)) would proceed as
follows:

1.

2.

3.

4.

5.

6.

The main program calls the FSQT subroutine. Storage area 1 i s now pushed-
down into the push-down l i s t making area 2 available.

The argument " 1 - ' I i s evaluated up to the next FSQT(X).
In order to evaluate this, the FSQT subroutine i s called again !

O n second entry to the subroutine, storage area 2 (containing the main
program return and the intermediate value of the argument) i s pushed-down.

X i s evaluated and then the square root i s taken.

The subroutine returns (to the middle of itself) with the answer FSQT(X).
When h i s return i s effected, storage area 2 i s popped-back-up (with the
old intermediate values).

The answer FSQT(X) i s subtracted from 1 to form the argument 1 -FSQT(X).
The square root of this i s taken and the function returns to the main program. -

Obviously, by using the PDL concept, subroutines may call themselves to any level (as long as
there i s PDL space available).

For most efficient core utilization, FOCAL uses the same PDL intermediate storage for al l sub-
routines. To do this, one value (PDP-8 word) i s pushed-down at a time. Values are 'popped'
in the reverse order that they are 'pushed'.

An additional feature of a PDL i s that i t can be used for temporary storage of variables in non-
recursive routines. One may consider the PDL as an extension of page zero since it can be accessed
from any page. Section V w i l l describe PDL handlers available in FOCAL.

D. Conclusion

The concepts outlined above w i l l introduce the experienced programmer to the internal working
of FOCAL. In the sections that follow, a more technical exposition of these routines wi l l be given.

TABLE 1

FOCAL TEXT HANDLERS

MNEMONIC

GETC

SORTC

TESTN

TESTC

TESTLPR

READC

PR I NTC

PACKC

PRINTLN

FINDLN

SPNOR

D ESCR 1 PT IO N

Get the next character from the text

Sort the present character against the table

Sort the present character into one of three types

Sort the present character into one of four other types

Test CHAR from left parenthesis

Read a character from the Teletype

Print CHAR on Teletype

Pack a character into buffer (store it)

Print the current line number

Find a given l ine

Ignore spaces

6

The Appendices contain examples elucidating the principles outlined in this report.

IV. TECHNICAL DETAILS - GENERAL

A. Arithmetic Manipulations

Arithmetic i s done using the three word floating point format. Input and output of numbers
are handled via the Flcating Point Package (FPP) I/O controller (with modifications to run
with the interrupt enabled). For details, see FPP documentation (DEC-08-YQYA-D).

B. Storage - (Core Layout)

The FOCAL interpreter occupies locations 1 - 3220 (see Figure 1). The FPP occupies
approximately 4600 - 7577, depending on how many functions are kept. The init ial dialogue
sets BOTTOM, the end of storage space, depending on the number of functions kept. The
remaining storage i s used for text, variable storage, and push-down l i s t s .

3220 - 4577 with al l functions

3220 - 5177 FEXP, FLOG, FATN deleted

3220 - 5232 FSIN, FCOS and above deleted

The text i s built up from location 3220 occupying approximately two characters per location.
Variables are built upward from the top of the text. They occupy 5 locations per variable
and are created as they are found in execution. Whenever the indirect program i s changed,
(modified, appended, or collapsed), a new starting point for variables i s indicated; hence,
old variables are erased. The push-down l i s t (explained more ful ly later) i s built from the
FPP down toward the variable storage area. Error messages occur with termination of the
program whenever these l i s t s overlap.

Instructions are stored i n the command/input buffer when in the command mode; the buffer
has sufficient locations for one line of characters.

C. Holes

The following locations are free for the user:

PAGE ZERO 16
162 - 175
171 - 175

FPP 5571 - 5577
5754 - 5777
6171 -6177
7154 - 7177
7346 - 7377
7554 - 7577
6317 - 6377

(Auto Index Register)
(Free in 4K FOCAL)
(Free i n 8K FOCAL)

i s used by the high-speed
reader control -- i f you do
not have one, this i s available

0000 1 PAGE ZERO 1

PACKAGE
7600

pDERs-MoNTToAs I
7777

TEXT STORAGEFORMAT

ASCI I CHAR

C.R.

VARIABLES FORMAT

TISSA Fl
Figure 1

8

D. Moving Bottom

For additional user coding room, BOTTOM may be changed at the sacrifice of text storage
To move BOTTOM, set the contents of location 27 (C(27)) to the last location available for
text (PDL) storage; e.g. i n order to free locations 4420-4577 for user additions to the inter-
preter, change C(27) to 4417.

V. TECHNICAL DATA - FOCAL SUBROUTINES

With the use of subroutines available in the FOCAL interpreter and a listing, a must, i t i s
relatively simple to write powerful user coded additions.

Unless otherwise stated, these subroutines must be entered with the AC = g; they return with the
AC =$.

A. Page Zero Reference Locations

CHAR - The contents of this location (142) contains the current character (in ASCII code)
from the text buffer.

SORTCN - This register contains references used by sorting routines (see below).

FLAC - This i s the first word of the floating accumulator (contains the exponent). The floating
accumulator occupies locations 44 - 46.
FLAC i s defined as 44.

B. Text Hand1 ing Routines

GETC = 4506
Gets next character from the text; exits with next character i s CHAR.

SORTC= 451 1
Cal I ing sequence:

Description:

Example:

SORTC

xxx
xxx

LIST-1
/cal I
/address of LIST-1
/return if in LIST
/return if not in LIST

If the accumulator i s nonzero, i t s contents are used;
otherwise the contents of CHAR are used to sort against
the LIST. If i t i s in the LIST, return to call + 2; if not,
return to call + 3. SORTCN is set to how far down in the
I i s t the match occurred.

If we are testing for one of the following:

LIST = .
254 /,
273 /;
21 5 /carriage return
7777

number 9

/ l i s t i s terminated by a negative

Assuming i t i s an error for CHAR not to be in the l i s t ,
the fol lowing coding applies:

SORTC /sort against LIST
LIST-1 /address of LIST
SKP
ERROR /do an error exit as not in LIST

If a match were found, SORTCN would have the values:

SORTCN Value - Contents of CHAR --
I ld
I 1

carriage return 2

NOTE: L is t s are terminated by negative numbers.

PRINTC = 451 2
Print the accumulator; i f the AC = fi print the contents of CHAR.

READC = 451 3
Read and echo a character from the keyboard. Put i t into CHAR.

SPNOR = 4521
Ignore spaces in text; exit with the first character that i s not a space in CHAR.

ERROR = 4526
Used to exit upon error detection; transfers control to the command mode and terminates
execution; prints error message. (in the FOCAL listing there are ERROR2, ERROR3, and
ERROR4. All of these are identical .)

TESTN
This subroutine i s actually a series of SORTC's with various returns:

CALL: TESTN
return1
return2
return3

/caI I
/return i f a period
/return i f not a period or a number
/return i f a number; SORTCN i s set to the
binary equivalent.

This routine tests only CHAR. AC must be fl.

TESTC (4525)
This subroutine is actually a series of SORTC's with various returns:

10

CALL: TESTC
return1
return2
return3
return4

/caI I
/terminator; SORTCN set according to TERMS
/number; SORTCN set as in TESTN
/function; (C HAR=F)
/alphabetic character

SORTJ (4510)
This subroutine is used as a multiple sort and branch routine. CHAR (or the AC i f nonzero)
i s compared to a l i s t .
ADDRESS i s executed. If a match i s not i n the l i s t , then return i s to calIf3.

If i t i s in the l is t , an address i s looked up and an effective JMP

CALL: SORT J
LlSTl -1
L I ST2-L I ST 1
RETURN

/ADDRESS of character l i s t
/difference in the addresses of l i s t s
/return here i f not in LlSTl

An example of this i s the FOCAL branch to a library command:

PO PA /get command CHAR
SORT J /branch
COML IST -1
C 0 M G 0 -C 0 M L I S T
ERROR2 /invaI id command

where

COMLIST = . COMGO= .
323 /S (ASCII)
306 /F
311 /I
304 /D
307 /G
303 /C
301 /A
324 /T
314 /L -

SET /ADDRESS OF SET CODING

IF
DO
GO
COMMENTS
ASK
TYPE
LIBRARY

FOR /ADDRESS OF FOR

-
- -
7777 / l i s t is terminated by a negative number

NOTE: L is t s are terminated by a negative number.

1 1

C. Ut i l i ty

RTL6= 4520
Rotate the AC six places to the left.

D, Pushdown List Control lers

For those unfamiliar with more powerful processors than the PDP-8, the ideas of recursion
and pushdown l i s t s are explained in Section I I . These subroutines appear to simulate hardware
commands on more sophisticated machines l ike the PDP-10 and even use the same mnemonics !
PUSHA= 4503
Puts the contents of the AC on the PDL; clears the accumulator.

POPA= 1413
Get the top entry on the PDL and put it i n the AC. (Note: auto-index register 13 i s the pointer
to the pushdown l is t ; thus 'POPA' i s actually TAD I 13.)

PUSHF = 4504
This i s essentially three PUSHA's and i s used for storage of floating point data.

Call: PUSHF
ADRESS /address of first location of three word floating point number.

POPF= 4505
The inverse of the PUSHF routine.

Call: PO PF
ADDRESS /address of where to put data.

PUSHJ = 4501
This i s the recursive subroutine call. The subroutine return i s put on the PDL and a JMP to the
subroutine address i s executed.

Call: PUSHJ
SU BROUT I N E
xxx

/address of SUBROUTINE
/address of this location i s
/stored on the PDL

POP J = 5502
Recursive subroutine return; the top element of the PDL i s used as the effective address of the
return.

12

E. Other Subroutines

INTEGER
Enter via a JMS I INTEGER. This routine makes an integer out of the FLAC. The low order
part i s in FLAC + 2, the high order part i s in FLAC t 1. Also, returns with the low order part
in the accumulator.

EFUN31
This routine i s the return from a function routine. It checks for a right bracket in CHAR (I)')

and normalizes the floating accumulator. Enter via a JMP I EFUN31.

EVAL
This subroutine evaluates arithmetic expressions; because i t i s recursive, i t - must be called via:

PUSHJ
EVAL
xxx /return

The subroutine return i s to call + 2 with the floating point value of the expression i t evaluated
in the FLAC. (How EVAL works i s discussed in Appendix A.)

NOTE: Al l temporary storage must be in the PDL before calling EVAL. This data must be
restored after the return. (see Appendix for examples.)

VI. LINKS TO FOCAL

A. Functions

The general form of a function in "FOCAL" i s FUNC(ARG1 ,ARG2, ---). The function coding
i s entered via a SORTJ where the address in designated in the table:

FNTABF= . /(376) i n FOCAL-W 8/68
XABS /address of FABS coding
XSGN /FSGN
XlNT /etc.
XDIS
XRAN
XDXS
XADC
ATN
EXP
LOG
SIN
cos
SQT
NEW /user defined function

To add a user coded function put the entry point of the function coding in the appropriate
location i n the above table. FOCAL wi l l branch to that location after the function name i s
decoded, and ARG1 i s evaluated in the floating accumulator (FLAC). To delete 2 function
from the l i s t , replace the current contents with 2725.

13

When the function evaluation i s complete, the answer must be left in the FLAC, and a JMP I
EFUN31 executed. The EFUN31 routine w i l l check to see i f there i s a right parenthesis ('I)")

in CHAR, and normalize the FLAC, before returning to the appropriate place in FOCAL. (See
Hints and Kinks, Section X l l l A, i f the answer i s an integer'.)

B. Links to FOCAL - the LIBRARY Command

FOCAL has an unimplemented command, the LIBRARY command (SET, ASK, TYPE, etc. are
commands). The general form of a command is:

X (any syntax allowable by coding). -
For example the SET command's allowable syntax is:

SET - (variable)= (arithmetic expression).

To generate the link to the user's LIBRARY command, put the entry address in 1201. FOCAL
w i l l enter via a JMPwith CHAR containing 24@8 (a space). The following coding may be used
at the end of a LIBRARY command to space over extraneous characters to a semicolon or carriage
return, which must be in CHAR before doing an effective JMP PROC to return to FOCAL:

-

SKP /entry
GETC /fetch the next character
SORTC

JMP PROC /FOUND IT !
JMP .-4 /not yet

/sort for a ; or c. r.
GLIST-I

C. Debugging

It has always been a problem to debug FOCAL programs, as FOCAL runs with the interrupt on.
Recently, a DECUS program XOD (DECUS #8-89) became available. This program may be used
in field 1 to debug FOCAL in field $wi th the following patches made by J. C. Alderman.

FIX UP XOD -
Patch FOCAL 0001
(field a) 01 75

676 1
Patch XOD 676 2
(field 1) 6763

6764
6765
6766

5575
26 03
5002
0002
5404
0003
661 3
0004

i 4

VII. ACKNOWLEDGEMENTS

The author wishes to express his thanks to J. C . Alderman for his help in formulation of ideas
and text editing. Also, an emphatic "thank you'' to Rick MerriII for the most beautiful program
in the world, FOCAL!

15

VI11. APPENDIX A

A. A Prescription

To add a function:

1. Put the function address in FNTABF.

2. Do coding.

a. Use PDL for temporary storage

b. If more than one argument i s needed:

PUSHJ
ARG

where ARG i s a supplied subroutine (See Appendix 6). ARG i s
a subroutine which moves past commas and evaluates arithmetic
statements, leaving the result in the FLAC.

3. Put the functional result in the FLAC.

4. Return to FOCAL via JMP I EFUN31.

To add the LIBRARY command:

1. Put the init ial address in the contents of 1201
(for expansion of commands see Appendix B).

2. Exit from coding via an effective JMP PROC. Note: the contents of CHAR
must be either ; or a carriage return.

16

X. APPENDIX C

A. Example of a Recursive Subroutine - EVAL

The subroutine EVAL i s an example of a recursive subroutine. The PDL i s used to defer
evaluation so that the arithmetic operations are performed according to operand priority.

In order to take care of bracketed quantities EVAL does the following:

i f a left bracket occurs - PUSHJ

i f a right brucket occurs - POPJ . EVAL

Given that EVAL evalueates arithmetic expressions, the above operations have the effect of
changing al l bracketed quantities to evaluated numbers. Hence, al I bracketed quantities
have now ''gone away'' and we are left with expressions like:

A+ B*C-Dh* F.

Operand priority i s assigned as follows:

opperat ion priority level

4-
-
*

A flow diagram approximating this subroutine i s given in Figure 2,

17

IX. APPENDIX B

A. A Few Useful Routines

1. Argument evaluator

A common requirement, expecially in function additions, i s a routine which test for and
evaluates additional arguments. The subroutine ARG (coded below), checks i f the contents
of CHAR 1s a comma (,), moves past the comma, evaluates the argument, and returns to
call+ 3. If the contents of CHAR i s anything other than a comma, return i s to call 42.

Call: PUSHJ
ARG

xxx
xxx

/CHAR was not a comma
/return with ARG(next) i n FLAC

ARG, TAD CHAR /get CHAR
TAD MCOMMA
SZA CLA /A comma?
JMP .$4 /yes: exit via POPJ
PUSHJ

IAC /increment return
POPJ

/move past comma and evaluate next arg.
EVAL-1

2. LIBRARY expansion

As FOCAL has only one 'extra' command character, LIBRARY, a routine to expand the number
of commands i s useful. In this way the normal format:

L (statement) -
which allows only one command branch, may be extended into the syntax:

L X (statement) - -
where X represents another command. A listing of this routine follows.

3. Function-command extention

The user may desire to perform a branch within a function, e.g. ARG2 in the function call
FNEW (ARG1 ,ARG2,ARG3, ---) may be used as a command letter to specify a branch to
perform different operations. An example of a subroutine to do this follows. (see next page)

NOTE: The return to FOCAL from each branch must be via a JMP I EFUN31.

With the use of the last two routines, the number of commands and/or functions may be extended
to any level.

18

/N3T I N L I S T

*

19

/
IF9CP.L CO?’IMPND GECODFF
/
FOCCD JMS I INTFC-FF /NAKF ARGUMENT AN INTFGEP

PtlSHP. /SAVE I T
TAG CHAF /COMMA SHOULC BE NEXT
TAE !YC3X;tvl.P.
SZA CLP
FPECIFLI
OFTC /3OVE PAST Cl).vl?IA
SPNOF /I GNOEE: S P A C E :

PUSHP /STASH I T
S33FTC

JYP *+3 /IN LIST
(3.E T C / C E T XEXT AND IGNOFE
JYP *+4
SPlV9F / I GN0F.E S F A C E S
POFA /GE.T COMNAND C K A F
SOFTJ

TAC CHAF 1 G F . T COfvlMANL C H A F *

TEFYS- 1 /I@JOFIE PEST 9 F rVA3E

CSY%k.\;IDS- 1
ADDS-CON%PNCS /GO TO APPEOFFI A T F FC)UTINE

EEElFk / N O T IS L I S T
YCOYNAD -254
/

*

20

SIMPLIFIED FLOWCHART OF SUBROUTINE €VAL

9 4
I

set LASTOP+0

put THISOP
(possible link to

(check for kockets)
(check far terminators)

answer In FLAC
variab(e(FLAC)

get THISOP

between FLAC a
var. on top of FQ

Figure 2

21

Two locations, LASTOP and THISOP, contain the priority assignment of the present and last
operands respectively. The steps in the evaluation of

A+ B*C-DBP F

would be:

EX PLAN AT ION THISOP LASTOP

N.A. ac
PDL - FLAC

A evaluate A into FLAC; lastop
starts out 0’.

1 ac
1

A plus has priority 1

A
ac

THISOP higher than LASTOP;
put LASTOP and FLAC in PDL

1 A evaluate B into FLAC; put THISOP
into LASTOP

3 1 A
121

THISOP has priority 3 - *

3 B
1

A
121

THISOP higher than LASTOP;
put LASTOP and FLAC in PDL
put THISOP into LASTOP

3 C B
1
A
fl

evaluate C into FLAC

2 3 C B
1

A
121

- has priority 2

C *B 1
A
ff

do the last operation between
FLAC and top of PDL.

1 C*B A
a’

get new LASTOP from PDL

22

THISOP

4

5

a’

PDL - LASTOP FLAC

2

2

2

4

4

5

5

C*B
1
A
0’

D C *B
1
A
kf

D C*B
1
A
P,

D
2

C *B
1
A
0’

E D
2

C *B
1
A
0’

E
4
D
2

C “B
1
A
0’

F (same as
above)

EXPLAN AT ION

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP in LASTOP

evaluate D

/ has priority 4

THISOP higher than LASTOP
put LASTOP and FLAC in PGL
put THISOP into LASTOP

)P has priority 5
evaluate E

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP into LASTOP

evaluate F
no m o r e operations so this
operation has priority Pl

23

THISOP

B

rzl

PDL - FLAC - LASTOP

4

2

ET F D
2

C *B
1
A
Id

D/E'l'F C*B
1
A
a,

1 C * B - D ~ '1'~ A
rzl

s' s' A+ B*C -D/E+F

EXPLANATION

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

(same as above)

(same as above)

THISOP LASTOP $hence we are done: do POPJ exit

24

XI. APPENDIX D

A. Field One Variable Array

1. Abstract

A new form of 8K FOCAL W. (DEC-08AJAD-PB), i s available which uses f ield one to store
data arrays i n three word floating-point form. This faci l i ty i s added to 4K FOCAL W via the
function call FNEW. The function may be called recursively to any level, and al l of the
features of FOCAL are retained. In addition, an ERASE or ERASE ALL command w i l l not wipe
out the array. Hence, variables may be stored for use in successive programs.

2. Requirements

Fi ts into unused locations i n the Floating-point Package (DEC-08-YQYA-PB)

71 54-71 77
6572-6576
5755-5764
7554-7577

3. Usage -
Loading

Load after FOCAL W. has been loaded into the machine (before or after init ial dialogue). Restart
FOCAL w. at 200~.

Cal I ing sequence

To store a variable Z as array element J:

- * S X=FNEW(J,Z)

or
* 4.3 S X=FNEW(J,Z) -

In addition X wil l be set equal to 2.

To get the data from array element K and set Z equal to this element:

* S Z=FNEW(K) -
i.e.
arguments i t i s interpreted as a 'PUT'.
arithmetical expression that can be evaluated.

If there i s only one argument the instruction i s interpreted as a 'GET'. If there are two
In the above examples the arguments may be any

25

C . Recursive cal I ing

The function FNEW may be called recursively at any level. VIZ,

* S Z= FNEW(J,FNEW(J-+IO)) -
sets Z FNEW(J.t-IO) and stores FNEW(+lo) in, array element J. -

- * 3.2 S Z= FDXS(J*l000) it. FDIS(FNEW(J)*NORM)

The arguments may be any arithmetical expression. The following are valid:

* S 2 = FNEW(J*M-3, FEXP(X*2)*Y) -
* S Z = FNEW(J,FNEW(J)*FEXP(FNEW(L))) -

4. Description -
The function FNEW protects the binary loader in upper core. The user, of course, may subdivide
his array into any number of smaller arrays, keeping track of his own indecies.

26

A F G
EOTTOX
C H P F
E FIN31
FNC,
ENT
E. F F.0 F
F VAL
FFNT
FFXT
FLAC
FLI ST 1
FMUL
F N E F'
FNTABF
(":ET
GLI ST
I CVOF
I L I ST
I XTEGF
I FE'TW
?4 COMXfi

POPA
POPd
PI!SHP
P U S H 3
? C!T
P7600
FEADC
SFTUF
SCIPTC
SQFTJ
SPNCIF
STAFTV
TEPEE
T L I ST
T 2

vrcr::

5755
0027
c 142
e100
7573
0077
b526
1603
4407
0000
O O 4 b
0 603
3000
7154
0370
75 s4
1406
0317
0761
0052
023 1
0163
0065
I A 13
5502
4503
4 5 G 1
7564
00 24
45 13
6572
4511
4 5 10
4521
0134
7173
1407
0157

27

0163

0413

FG2

7 154
7155
7156
7 157
7160

7161
7162
7163
7 164
7165
7166
7167
7170
7171
717%
7173
717b
7175

7176
7177

/
/
/
F I E L C 0
/
/PAGE Z F R O CONSTANTS
/
* 163
/
/
*FNTAEF+ 15

7524 YCOYYAI -254

7154
/
/
*7154
/ F I F L L
/CALL :
/

/
/

440 7 FNEVI
3373
0000
4452
7500

5366
1056
7700
4526
1046
4503
450 1
5755
5777
5770
0002 THFFFI
3000
0000

/
/
/

7564
7554

FNEF' /PUT ADDEESS. I V FNTAEF

FFXT /E%?TER FPP
i?4UL TXPEF
FFX T
J Y S I INTFGEE
S Y P

JX? 0 + 5
TAD 56
FXA CLA
FFF9F
TAC FLAC+P
PUSHA
PIT ,CHJ
AF G
JYP GET
J X ? ?UT
2
3@00
0000

/YULT* GDDFESS EY TEEEF FOF. TXPFF
/FP ST3FAGF
/Y'JIP.KF I T AN IVTE,GF'F ADEFFSS.
/EEGIN C H F C X FOF. OVEEKFI TING L O P . G E i

/AI?GB EX1 STS; GET DATA
/?LIT GRTA A!I;AY
/CHANGE T H I S FOE TWO KOFD
/OF INTEGEE STOEAGE

28

5 755
5 7 5 6
5757
5 760
5 7 6 1
5 7F.F
e; 7 6 3
5 764

7 5 5 4
7555
7556
7557
7560
7561
7562
7563
7 564
7565
7566
7567
757G
7571
7572
7573
7574

7577

t: 57p
6573
(- 5 5 L ‘
6 5 7 5
6576

1 I A 2
1163
7640
5364
LiSG 1
1602
700 1
5 5 0 2

-4777
1416
3044
1L16
3045
1416
30.4 6
5373
1 7 7 7
1 G d L i

3 n 16
1045
3416
1046
Sf j 16
620 1
5500

6572

C O O 0
1413
3016
621 1
5772

*5755
/EVALViATF PV AT:CI?YE.NT; IF‘ Xi3T
ITHFPE i?::FTUF:N TO CALL+2 VIA FOFJ
/ I F THFF‘F TO CALL+3
/
A E G t TPr, C X M

TAC YC:CIn.VIYA
C Z P . CLA 11.5 I T A COWliA?
rn? .+& / N O : A r ; G 2 XI55ING
PtI,SH J

I AC /INCFE!4E,XT FETUFN
PO? J /DO SUEPr3UTI NE: ?E-’Tl.IFN

FVAL- 1

/
/
*7554
GFTt J3 S S E TIIP /SET 1:F I313INTFF TO CATP.

TAG I 16 /GET EXFOXEJJT
DC0 FLAC
TAC I l e /GFT H I GX 31TE4F. % A N T I SSA
L‘CA FLAC+l
TAC I 16 /GET L9b CIECEF
D C A FLAC+%
JXF FXiC

TGC FLAC
ECO I 16 /?UT Ar?PY EX?ONENT
TAT) FL.@C+l
LCE! I 16
TRCI FLP.C+2
DCP I 16

ENL, C D F /FIESTOFF DATP FI FLE
JNF I EFGN31 /DO F’tlNCTI O N EFTVEN

/
/

FETI SYS .SETI!F

* 6 5 7 2
/ S E T I F PQINTEF. TO A F F A Y I!V XE- 16
/CHANGE TO GATA F I E L E 1
/
CFTvl7, -. C

P 9 P P / G E T ACCPECS
D C A 16
CCF 10
J,:”IiP I AFTUF

/
/

29

XII. APPENDIX E

A. Disk Variable Storage

1. Abstract

This FOCAL overlay i s equivalent to the FIELD ONE variable addition to FOCAL described in
Appendix D. In this case, however, variables are stored on the Disk.

2. Comments

The contents of location 167 (BASE) must be set for the user’s machine configuration. Disk
variables are written on the disk from BASE upward, BASE i s the disk extended address of the
lowest used location.

e.g.
last 4K of one disk system C (1 67) = 7@@8

last 8K of two disk system C(167)= IS!@

last 16K of two disk system C(167)= 140”

The present listing i s for the last 4K on a two disk system, i.e. C(167)= 17$@,.

30

31

32

0162
0 163
0 164
0 165
0 1 6 6
0 167

0 4 1 3

5 755
5756
5 757
5 760
5 7 6 1
5 762
5 763
5 764

715A
7155
7 1 5 6
7 157
7 160
7161
7 1 6 2
7163
71hb
7165
7 1 6 6
7 1 6 7
7170
7171
717%
7173
717

7524
7750
775 1
6603
6605
1700

7154

1102
1162
7 6 4 G
5 3 6 &
4 5 0 1
1603
700 i
55G%

4 4 0 7
3373
C O G 0
4 A 5 P
4503
1 oa 5
4520
037%
1167
45G3
L!50 1
5755
7341!
5777
0700
0 0 0 %

7173
717h
7175

7177

7554
7555
7556
7557
7 5 6 0
756 1
756F
7563
7 564
7565
7 5 6 6
7567
7 s 7 0
7 5 7 1
757%
7573
75749

O C O F
30CC
OOOG

7554

1166
3365
1L-112
6615
734 6
3 5 6 3
137k
3 5 64
1413
0000

6 6 2 2
5367
6ec 1
600 1
5 5 O G
0043

m o p

THFEEJ

*7554
?4'3i'E,

I NSTFJ

Pf!3,
/
/

2
3000
0

TAE ?:T*I TF.
CCA INSTF
POFP
DFPL
STA CLL FTL
G C A I t'c
TP.13 P43
E C A I C f i
P9PP
0
I 3 F
CFSC
J.42 * - 1
ECY A
I gN
J3.F I FFI.'~V31
4 2

/GET EEP

/INTO FLAC

/GET D X P

34

XIII. APPENDIX F

A. Hints and Kinks Department

For the experienced programmer the following may be helpful.

1. Location EVAL-1 contains the subroutine call GETC. Hence, to move past a character
andevaluate an argument one may:

PUSHJ
EVAL-1

2. The first instruction in the POPJ subroutine i s TAD I 13. Hence, for multiple returns
from a subroutine one may POPJ with the AC nonzero, e.g. i f the AC i s 1, return i s to
call 1-3 instead of call + 2 (as in a normal POPJ return). VIZ,

PUSHJ
SU B

xx
xx

xx

/caI I

/normal return
/POPJ return i f AC- 1 when POPJ

/return i f AC= 2
/etc.

called

In all cases the subroutine wi l l return with the AC=#.

3. When using signed and unsigned integers core must be taken that minus zero is not in the
FLAC since EFUN31 normalizes the FLAC. (FOCAL wi l l 'hang' in that event.) The following
coding w i l l apply for unsigned integers.

CLL RAR
DCA FLAC + 1
RAR
DCA FLAC-I- 2
TAD P14
DCA FLAC /put exponent in
JMP I EFUN31

/make sure sign bit i s #

/put carry bi t away

for signed integers:

CLL RAL
SNA
c LL
RAR
DCA FLAC+ 1
DCA FLAC I- 2
TAD DCA FLAC
JMP I EFUN31

/make sure positive ,d

35

4. There i s a BUG in FOCAL. The RMF in the interrupt routine must be moved to just
prior to the ION. This w i l l not give trouble until f ield one coding i s added.

5 . For hardware initialization when FOCAL recovers (Control<) one may use location
2775.

6. For machines without a high-speed reader, additional coding room of 6320-6377 may
be gained by overwriting the HRS routine. To remove the * command deposit 2725 in
location 1207.

36

FOCAL-17, Change Notice (for FOCAL, 1969) (Please note t h a t a l l cor-
r e c t e d mater ia l i s underl ined.)

Pg. 2 , l i n e #7 f r o m bottom, should read: ... w i t h FOCAL (e.g. GETC=4543.-
Pg. 7 , l i n e #Is 8,9: t h e FOCAL i n t e r p r e t e r occupies 1-3217 (see f i g , 11

Pg. 7, d e l e t e s e c t i o n C. HOLES
Pg. 9, l i n e #3: T o move BOTTOM, se t t h e conten ts of loca t ion 35
Pg. 9, l i n e #5: ..., change C (2 2) t o 4417.
Pg. 98 l i n e #12: CHAR-The contents of t h i s locat ion (66) .. .
Pg.9, l i n e #19: GETC=4545 -
Pg. 9, l i n e #21: SORTC=4559
Pg. 10, l i n e #13: PRINTC=4551 -
PqY 10, l i n e #15: READC=4552

Pg. l o , l i n e #19: ERROR=4566
Pg. l o , l i n e #22 should read: ERROR4. A l l of t h e s e are i d e n t i c a l ant;

i n d i c a t e an excess, miscellaneous, or format error r e s p e c t i v e l y .)
Pg. l o , l i n e #23: --I_- TESTN=4561
Pg. 10, l i n e #2 f r o m bottom: TESTC=4564 -
Pg. 1 2 , l i n e #2: RTL6=4557 --
Pg. 1 2 , l i n e #8: PUSHA=4542
Pg. 1 2 , l i n e # lo : POPA=1413
Pg. 12, l i n e #13: PUSHF=4-543
Pgo 1 2 , l i n e #17: POPF=4544 ---
Pg, 12, l i n e #21: PUSHJ=4549
Pg, 1 2 , l i n e #27: POPJ=5541
Pg. 13, l i n e #2: INTEGER=53
Pg. 138 l i n e #6: EFUN3I=Lz
Pg. 13, l i n e #9: EVAL=1613
Pg. 13, l i n e #22 should read: FNTABF=. /(376) i n FOCAL
Pg. 13, l as t l i n e : ...replace t h e c u r r e n t contents w i t h ERRORS(2725) -
Pg. 14, append t o end of page: A s s e m b l e ODT a t e i t h e r 36&2 o r 46gg
Pg. 16, l i n e #4# from t h e bottom: 1. P u t t h e i n i t i a l address i n t h e
contents of C O M G W ~ ~
Pgo 19, d e l e t e t h e e n t i r e page
Pg, 25, l i n e #4, should read: A new form of 8 K over lav (DEC-08-AJ9E-€2. - .
Pg. 25, l i n e #5, should read:
Pgo 25, l i n e 9 through 14: d e l e t e
Fgo 25, l i n e #17-18, should read: Load a f te r FOCAL has been loaded,, R t

s t a r t FOCAL a t 29g8.
Pg. 27, add note t o bottom of t h e page: NOTE: Ignore t h e oc t a l numbers
from he re on, i f us ing FOCAL 7/9/69,
Pg. 29, l a s t l i n e should read: JMP I - SETUP
Pg. 36, l i n e #13: DELZTE I t e m #5,

I

The FPP occupies approx. 4617-7577,...

-

-

Pg. 13, l i n e #17: SPNORz456g

-- --

O O . This f a c i l i t y i s added t o 4K FOCAL via

Pg, 36, l i n e #5-7, i t e m 6 should read:
6, For machines wi thout a hiqh speed r eade r , a d d i t i o n a l codinq from

6320-6377 may be qained by over-readinq t h e HRS rou t ine .

3 7

