
P?S/8 PAL

Technical Guide

Prerelease

Name: P?S/8 PAL Technical Guide

Document: PQS8 PAL Technical Guide.rtf

File[s]: PQS8 PAL Technical Guide.PDF

P?S Index: O>R,O>R.70037O@K0037SDBGMHB@K0037FTHCD

Security Level: 2

Location: NY

Date: 14-Oct-2019

Medium: PDF

1st Private Development Prerelease June 2015
2nd Private Development Prerelease August 2015
3rd Private Development Prerelease January 2016

1st Semi-Public Prerelease January 2019
2nd Semi-Public Prerelease October 2019

P?S/8 PAL Version 8S

Technical Guide

Copyright © 1975 Charles Lasner Associates

Copyright © 2019 »CLA Systems

 Contact:
 CLASystems@gmail.com

iii

CONTENTS

1.00 Introduction

1.10 P?S/8 keyboard monitor commands to invoke P?S/8 PAL

1.11 PAL input files

1.12 PAL output files

1.13 Command-line option switches

1.14 Passed numerical value

2.00 Command-line option descriptions

2.01 Output file options

2.02 Chaining options

2.03 Pass control options

2.04 Symbol table options

2.05 Listing options

2.06 Literal and link options

2.07 Limitations of generated links

2.08 Literal statement examples

2.09 Literal extent issues

2.10 Dual assembly mode options

2.11 Dual mode assembly tips

2.12 LINCtape information

2.13 Memory management options

2.20 P?S/8 PAL assembler performance

2.30 Additional binary chaining options

2.40 Text management options

2.41 Text directive issues

iv

CONTENTS
(continued)

2.42 Other text-related issues

2.50 Additional command-line option switches and issues

2.60 P?S/8 PAL directives

2.61 Issues regarding the DTORG directive

2.62 PAL8 implementation of DTORG

2.63 Proposed remedies to the DTORG problem

2.70 Additional information

2.80 Issues with regard to using FLIP.EXE to convert line conventions

Appendix A - P?S/8 PAL error messages

Appendix B - P?S/8 PAL directives

Appendix C - P?S/8 PAL conditional literals and related topics

Appendix D - P?S/8 PAL command-line option switch ordered summary

Glossary of Terms

v

This page intentionally left blank.

vi

Page 1 of 103

1.00 Introduction

P?S/8 supports a general-purpose assembler for PDP-8 Assembly Language
(PAL) known as P?S/8 PAL. This document describes all technical
aspects of P?S/8 PAL in terms of both language features and
constructive usage; this includes certain tips and techniques for
PAL programming helpful to all users regardless of assembly language
skill level.

Note: The current release of P?S/8 PAL is Version 8S which is provided
as part of P?S/8 Version 8Z; this includes a small number of
documented binary patches made since the original 06-Oct-1987 release.
Specific patch details can be found within the P?S/8 System Change Log
maintained as a separate document.

LINC mode assembly (as used on LINC, LINC-8 and PDP-12 computers) is
enabled by the use of certain command-line options; the implementation
is generally compatible with the embedded assembler utility of the
LAP6-DIAL/DIAL-MS operating system for the PDP-12. When assembling
LINC code (possibly interspersed with PDP-8 code), P?S/8 PAL can be
considered to be a cross-assembler.

While execution of binary LINC mode code requires LINC computer
hardware, P?S/8 PAL does not require any additional hardware beyond
the basic P?S/8 system for any PDP-8 (or DECmate) model to assemble
LINC source code into binary code. Depending on the specifics of the
application, it may be necessary to devise utilities to write the
developed program on the intended hardware. (The LINC is not software
compatible with the PDP-8; however, it is possible to write arbitrary
data on LINCtape blocks formatted for use on the LINC. No version of
P?S/8 (or OS/8) directly supports this media; as such, utilities must
be written to transfer data as required to write data for the LINC.
There are similar requirements for use with analogous systems that run
on the LINC-8 and the PDP-12.)

Note: A list of supported P?S/8 hardware configurations can be found
within the P?S/8 Keyboard Monitor Command Guide for P?S/8 Version 8Z
(or newer); P?S/8 PAL is a standard component of all systems.

For more information concerning dual-mode PDP-8 and LINC assembly, see
Sections 2.10 and 2.11 below which document dual-mode assembly
considerations. As stated above: Depending on the ultimate target
system for the binary output of the assembly, additional utilities may
be necessary to load the binary data onto the intended environment.

Unlike competing assemblers (TOPS-10 PAL10 and OS/8 PAL8), there are
numerous command-line option switches supported by P?S/8 PAL; this is
necessary to allow the modular sections of P?S/8 PAL to be invoked as
required. Various portions of this document will explain these
command-line switches including information on how best to deploy them
for any given assembly situation. Only certain features of P?S/8 PAL
are needed in most typical assembly scenarios; as such, it is
recommended that only relevant command-line option switches be set
during any particular assembly operation.

Page 2 of 103

Note: Official releases of TOPS-10 PAL10 are of limited use for
serious PDP-8 program development as compared to either P?S/8 PAL or
OS/8 PAL8. This is due to a small number of important features that
are either entirely lacking or are misimplemented; as such, PAL10 is
unusable for a significant amount of PDP-8 program development.

This is ironic since, at one point in time, most PDP-8 program
development (outside of the R-L Monitor System and all but the
earliest implementations of P?S/8) was performed on TOPS-10 systems to
take advantage of the then-considered-rich feature set of PAL10 and
the advanced system features of TOPS-10 for program developers using
(nearly) any language. Unfortunately, as new features were added to
other assemblers, PAL10 maintenance programmers made little (if any)
changes; thus, PAL10 failed to keep pace with the emerging needs of
PDP-8 system programmers who used either PAL8 or P?S/8 PAL (or both)
including some of the newer features required for proper program
development.

It is hoped that proficient PDP-10 developers can produce an updated
PAL10 release generally compatible with at least the important
features that distinguish P?S/8 PAL (and OS/8 PAL8) from the present
PAL10 release. The developers of P?S/8 will gladly discuss these
issues (and recommend that P?S/8 PAL features beyond compatibility
with PAL8 be included).

An important feature of the PAL language is the availability of
several forms of literal statements; sections 2.06 through 2.09 below
cover various aspects of literal usage and recommended syntax.

Fortunately, the current PAL10 literal implementation is largely
compatible with PAL8 (which is in turn a subset of the P?S/8 PAL
literal implementation).

The primary difference between the P?S/8 PAL literal implementation
and that of PAL10 (and PAL8) is the conditional (or dependent)
literal, a feature conceptually unique to P?S/8 PAL. Appendix C below
discusses numerous issues related to conditional literals.

1.10 P?S/8 keyboard monitor commands to invoke P?S/8 PAL

Note: Command element descriptions in this document follow the
conventions used in the P?S/8 Keyboard Monitor Command Guide.

Command-line options are passed within P?S/8 in the same manner in
which OS/8 Concise Command Language (CCL) commands are formed (with
certain extension features added).

Note: P?S/8 supports several command prompt variations. The prompt
used throughout this document is identical to TOPS-10 and OS/8 to
facilitate comparisons between the PAL implementations in the various
operating systems. <SP>, , and <HT> are freely allowed between
command elements to enhance command readability and are not required.
For a discussion of all P?S/8 command prompt options, consult P?S/8
SET command documentation available elsewhere.

Page 3 of 103

Typical command examples (in slightly simplified form) are structured
as follows:

.PAL output files < input files option switches

or

.PAL input files > output files option switches

Note: As shown above, the P?S/8 keyboard monitor allows command
formation in either file specification order; this allows the user to
work in a familiar environment regardless of prior experience with
various other DEC operating systems (or equivalent). The relevant
commands are generally similar to various concise command
implementations found in other DEC operating systems.

The option switches can be placed anywhere in the command line after
the program name (in this instance PAL) and may be stated redundantly.

For more information about P?S/8 command formation and command-line
variations, consult the P?S/8 Keyboard Monitor Command Guide available
as a separate document.

1.11 PAL input files

PAL program input data is generally the concatenated contents of a
group of Tiny File System (TFS) text files passed in a specified order
in the input section of the command. Each file contains 2048 12-bit
words, which will tend to consist of up to 3/4 of this capacity as
six-bit bytes in the P?S/8 ASCII text (subset) character set (which
includes the <HT> character). Typically this results in about 3000
characters per TFS file (depending on average line width and attendant
line number requirements). Effective line width is greatly influenced
by the use of <HT> characters, which generally occupy several printed
spaces, yet are stored as a single six-bit byte each. The recommended
PAL syntax encourages the free use of <HT> characters as required.

Note: P?S/8 TFS text files include line numbers which are ignored by
P?S/8 PAL. Outside of the edit buffer of the keyboard monitor (which
can modify the text contents and line numbers), the line numbers are
permanent (once saved as a TFS file). Most P?S/8 system programs
ignore line number content within input files; exceptions include
several utilities specifically designed to display or otherwise
interact with line numbers (present only in TFS text files and not in
other files, such as extended-length text files).

The maximum number of files that can be passed to any P?S/8 system
program is 17. Since several file slots may be needed for output
files, the effective maximum number of input files tends to be
somewhat smaller (typically 14 input files to allow three output
files).

Page 4 of 103

Note: P?S/8 also supports extended-length text files, any one of which
can typically contain considerably more text characters than the
entirety of 17 TFS files. For more information regarding extended-
length file considerations, consult documentation of the P?S/8 OS8CON
program (or other similar file conversion utility programs) available
as separate documents.

1.12 PAL output files

As stated above, all P?S/8 TFS files are fixed size (2048 12-bit
words). TFS binary files are created in the versatile Slurp binary
loader format, which is significantly more efficient than binary files
based on paper-tape frame images (such as the standard DEC BIN loader
format). A typical TFS binary file contains nearly 6/7 as much binary
data as a block-format core-image of identical size, without
implementing any form of internal block structure.

Binary loaders for TFS Slurp format binary files are available on all
standard P?S/8 configurations; a generic virtual Slurp format binary
loader is implemented in all systems. Most systems also support a
device-specific Slurp format binary loader (which will be the default
loader if available). Command-line option switches control which
loader will be used in specific situations initiated by P?S/8 PAL
command variations (assemble then load and go or assemble then create
bitmap then load and go).

At the end of the assembly, the count of created binary files is
displayed (along with other statistics); this allows any excess passed
output files to be repurposed as desired.

Note: If insufficient output files are passed, a BO (Binary Overflow)
error message will be displayed on the system console; the assembly
process will be aborted.

1.13 Command-line option switches

The command-line option switches are passed in a manner consistent
with CCL as implemented in TOPS-10 (and OS/8). Two variant forms are
supported as follows:

1) One or more individual option switches each preceded by / such
 as:

 /M /N /L

2) Grouped switches preceded by (such as:

 (MNL)

 Note: The trailing) is optional unless needed to separate the
 option group from another command-line section.

Page 5 of 103

Both forms of passing command-line option switches can be used
together in the same command; all command-line option switches may be
given redundantly without error.

1.14 Passed numerical value

P?S/8 PAL can optionally chain to P?S/8 BIN, the binary file loading
and binary paper-tape utility program, for the purpose of loading (or
punching to binary paper-tape) the binary files created during the
assembly. If desired, the assembled program can be automatically
started at an address expressed as =xxxx where xxxx is up to four
octal digits in the range of 0000 through 7776; for programs starting
in extended memory, the /1 through /7 switches provide the starting
field. See Sections 2.02 and 2.30 below for more information.

The P?S/8 keyboard monitor internally passes the value 7777 when an
explicit numerical value is not provided. When binary file loading is
in effect, P?S/8 BIN uses this value to effect program start at a
system-specific location somewhere within the system kernel area
(07600-07777); a safe halt instruction is loaded at the selected
location. Pressing Continue on the front panel will effectively loop
in place preventing potential problems; the user is expected to
constructively start the program manually (at a user-determined
address) using the computer front panel switch register.

Note: By use of the P?S/8 GET command (or adding the equivalent
options to the P?S/8 PAL command line), a core-image of the program
can be created at the end of the assembly process to allow further
program development. Debugging and related binary program options are
described in a separate document.

On systems lacking front panels (such as the PDP-8/m or PDP-8/a
without the optional programmer's panel, or any DECmate model) the GET
command should be used to allow program execution control from P?S/8
ODT or other utilities.

2.00 Command-line option descriptions

The following sections of this document describe command-line options
grouped by common function. Command-line option lists and additional
information are provided elsewhere in this document. Appendix D below
contains a list of all command-line options in sorted order.

2.01 Output file options

If explicit binary output files are not specified in the command line,
the following command-line option switches can be used:

/B The % file on the P?S/8 system device bootup logical unit
 (see description of the /U command-line option switch below)
 is used as the (first) binary output file.

Page 6 of 103

/D If the /B command-line option switch is also set, the $ file
 on the P?S/8 system device bootup logical unit (see
 description of the /U command-line option switch below) is
 used as the second binary output file (if required).

/U Change the logical unit that applies (when the /B and/or /D
 command-line option switches are used as described above),
 from the system device bootup logical unit to the value
 determined by the following calculation:

 (System device bootup logical unit XOR 1); this selects the
 opposite logical unit of the primary pair of logical drive
 units.

 Note: On certain P?S/8 systems the system device bootup
 logical unit can be non-zero (perhaps logical drive 1 through
 7); as such, this method will generally achieve a useful drive
 pairing.

Due to the physical proximity to the beginning of storage devices,
specifying the % and $ files can noticeably speed up various system
commands. Additionally, these files are not subject to the overhead
of TFS directory functions on the same logical device unit; as such,
many operations have significantly lower overhead when these files are
used strategically. On tape-based systems, throughput can be further
improved by using a logical drive unit different from the system
bootup drive.

Note: The /B, /D and /U command-line option switches are provided to
simplify the specification of output files, as most assemblies require
one or two output files. All explicit file specifications can
designate an optional device unit; as such, any combination of files
can state associated logical device units as necessary. The use of
these command-line option switches merely allows specifying commonly
used output file combinations in a more succinct form; however, if
used in BATCH files, the actual files used could be determined by the
particular system device bootup logical unit in effect.

If more than two binary output files are required, or the created
binary files should be written to permanently named TFS files, the
command line must include explicitly stated output files.

Note: If the second binary output file is not required, the /D
command-line option switch will be ignored (effectively reducing the
command-line to have been given with only the /B command-line option
switch set regarding output file selection); the report given at the
end of the assembly indicates the total count of binary output files
actually created.

2.02 Chaining options

Note: Only binary output files created during the assembly
process are used during chaining operations; excess output files
(if any) are deleted from the passed file list.

Page 7 of 103

Automatic chaining options can be invoked to further process
binary files created during the assembly as follows:

/G The files created during the assembly are passed as
 input files to the P?S/8 BIN utility for loading and
 execution (or punching binary paper-tapes as described below
 in Section 2.30); additional loading (or punching) options may
 be applied as necessary.

 Note: The chain to P?S/8 BIN is prevented if there were any
 assembly errors to avoid execution of unknown instructions.

 With regard to chaining to P?S/8 BIN for the purpose of
 loading binary files, see Section 2.30 below for additional
 details; binary chaining options include the /H, /I, /V and /Z
 command-line option switches and the =xxxx passed numerical
 value (possibly in conjunction with the /1 through /7 command-
 line option switches).

 Note: The /W command-line option switch must be clear to allow
 binary loading (as opposed to punching binary paper tapes).

 With regard to chaining to P?S/8 BIN for the purpose of
 punching binary paper-tape output, additional binary chaining
 options include the /F and /R command-line option switches.
 See Section 2.30 below for more information.

 Note: The /W option switch must be set when punching binary
 paper-tape output (as opposed to binary file loading).

/M The files created during the assembly are passed as input
 files to the P?S/8 MAP utility to create a bitmap of the
 assembled program indicating actual memory usage.

 Note: The format of bitmap output created by P?S/8 MAP is
 generally consistent with the output produced by PAL10 after
 any FIELD directive is used (or at the end of assembly) and is
 a superset of the output of OS/8 BITMAP. The title format and
 pagination specifics are the same as those used for the
 assembler listing output (if any) and assembly statistics
 pages (which in part depend on the usage of the /N option
 switch as described in Section 2.05 below).

 It is possible to specify chaining options to P?S/8 MAP and
 P?S/8 BIN in a single command. The chain to P?S/8 MAP will
 always be performed first; the additional chain to P?S/8 BIN
 will be prevented if errors occur during the assembly.

 Note: When the P?S/8 MAP utility is used without chaining,
 certain command-line option switches can be used to limit
 which memory fields are eligible for mapping; during the
 chaining process this feature is inhibited. As such, all
 memory fields are eligible for bitmap output following the
 assembly; the output is limited to actually processed fields.

Page 8 of 103

 For more information about mapping field choices, consult
 documentation of P?S/8 MAP available in a separate document.

2.03 Pass control options

/K Perform a two-pass assembly; the default is a single assembly
 pass.

 Note: The /K command-line option switch is not required if any
 binary or listing options are specified, as these functions
 intrinsically require two pass operation.

 Unlike PAL8 which always performs two (or three) passes, P?S/8
 PAL can perform a useful single-pass assembly (which is
 consistent with the paper-tape system assembly program known
 as PAL III) as follows:

 At the end of pass one, all symbols still not defined are
 shown on the system console terminal in sorted order; the
 value indicated is the address within the assembly where each
 undefined symbol was first encountered. This facilitates
 early program development when it is likely that (many)
 portions of the program have not yet been completed.
 Alternatively, variables and temporaries may not yet be
 defined (or perhaps are the object of typographical errors
 which can cause problems when certain symbols have names
 similar to that of other symbols); most problems of this
 nature can be quickly resolved by referencing the relatively
 short list of undefined symbols.

 Contrast this functionality with that provided by PAL10 or
 PAL8, neither of which support a mechanism to highlight
 undefined symbols. The only facility provided in these
 assembly programs is to create a second (or third) pass
 listing file of the entire assembly; searching through this
 far more voluminous output can be tedious as there are usually
 several references to each undefined symbol as well as many
 lines of output unrelated to errors.

 Note: In perverse instances, large quantities of erroneous
 output could be triggered by the failure to correctly define
 key symbols during early program development; these
 circumstances could make the manual process of eliminating
 errors far worse due to cascading dependencies.

 As such, using PAL10 or PAL8 can easily become a time-
 consuming process. In such circumstances, it would be prudent
 to limit the assembly to a single pass using P?S/8 PAL until
 key problems are solved. Using only the undefined symbol
 report (available at the end of pass one of the P?S/8 PAL
 assembly), most problematic issues can generally be
 eliminated.

Page 9 of 103

 Using a second pass listing provided by P?S/8 PAL would be as
 frustrating to use as that obtained from PAL8; however, only
 P?S/8 PAL provides the one pass method that is recommended for
 use during the early stages of program development.

 See the description of the /L and /N command-line option
 switches for the alternate (and unrelated) usage of the /K
 command-line option switch.

Second pass assembly considerations.

A second assembly pass is performed if binary output files are
created and/or assembly listing output is produced. During pass
two, any additional error messages will be displayed on the
prevailing output device (system console terminal or lineprinter)
in a format similar to that of PAL10 and PAL8 (including the
nearest symbol plus any numerical offset) to facilitate source
code development; in certain instances additional information may
be displayed.

Programmers may embellish the displayed output of the assembly
process when critical sections are being processed as follows:

a) P?S/8 PAL supports the ERROR directive; this causes a
 deliberate assembly error. By using the ERROR directive, the
 programmer can design internal safeguards to prevent logical
 inconsistencies that might occur during program maintenance.

 The design of safeguarded code sections generally includes the
 use of conditional assembly statements to calculate
 problematic scenarios; as long as the specific requirements
 are met, there will be no output associated with the use of
 the ERROR directive.

 Note: The output of the ERROR directive is consistent with
 that of all standard errors during each assembly pass and can
 include the display of an optional evaluated argument.
 Automatic binary loading by chaining to P?S/8 BIN will be
 prevented if the ERROR directive was assembled.

b) P?S/8 PAL supports the PAUSE directive both as originally
 implemented in PAL III (to ignore the rest of the contents of
 the latest input file) and also as an extended feature which
 can embellish displayed output during the assembly process.

 When the PAUSE directive is used with an argument, the
 argument is evaluated as a 12-bit unsigned integer. Displayed
 output is consistent with the format of standard error
 messages; however, usage of the PAUSE directive does not
 report as an error.

Page 10 of 103

 The programmer can utilize the PAUSE directive for a variety
 of purposes (such as announcing the assembly pass or start of
 assembly of a critical section). When a logical inconsistency
 is detected, the PAUSE directive can be used to output
 additional information about the error to assist maintenance
 programmers to obtain an understanding of the nature of the
 problem.

 The techniques described above and other features unique to
 P?S/8 PAL can be qualified to prevent use with incompatible
 assemblers.

 The PQS directive is defined only in P?S/8 PAL; this allows
 the programmer to create conditional assembly statements to
 restrict usage of these features to P?S/8 PAL and not generate
 erroneous errors caused by the failure to support the features
 in other assemblers. An example of this usage is as follows:

IFNDEF PQS <PQS= 0> /ZERO ONLY IF NOT P?S/8 PAL.

IFNZRO PQS <PAUSE .> /DISPLAY CURRENT ORIGIN.

 Note: The XLIST directive, as implemented in P?S/8 PAL, is
 consistent with PAL10 and PAL8; XLIST statements can be used
 to prevent output of portions of an assembly as necessary,
 such as assembler-specific statements as described above.
 When deployed judiciously, all unassembled conditional
 assembly can be hidden from view when producing a second-pass
 listing; the only indication of this technique will be a
 corresponding change in the statement number field when normal
 listing output is restored.

2.04 Symbol table options

/S The symbol table will be output at the end of the assembly.

 If the /N command-line option switch is also set, the symbol
 table format will be consistent with that of an enhanced
 listing pass (if enabled).

 Note: The exact output may be subject to the number of
 assembly passes performed; two pass assembly is used if
 binary output files are created and/or listing output is
 produced, or the /K option switch is set.

/A If the /S command-line option switch is set, the entire symbol
 table will be output at the end of the assembly; this includes
 all permanent symbols including assembly directives.

 Note: If dual-mode (PDP-8 and LINC) assembly is in effect, the
 symbol table will be set to that which applies at the end of
 the assembly; certain symbols with dual definitions will
 display values consistent with the final assembly mode.

Page 11 of 103

 Certain permanent symbols may have been redefined during the
 assembly by source code statements; this is especially
 important in LINC mode assembly where there may be multiple
 definitions of certain instructions that are model-dependent
 within the various LINC hardware implementations.

 While all default LINC mode definitions within P?S/8 PAL are
 for the PDP-12 LINC variant, source code changes can be made
 to redefine affected symbols for compatibility with the LINC-8
 or classic LINC as required. Permanent change of certain SKP
 class (or other LINC instructions) can only be made at the
 source-code level of P?S/8 PAL itself; as such, it is
 recommended that all affected symbols be redefined in user
 source code statements as required.

2.05 Listing options

/L Assembly listing output will be produced.

 Unlike PAL10 and PAL8, P?S/8 PAL performs (at most) two
 passes. P?S/8 PAL is capable of simultaneously creating
 binary file and listing output during pass two; as such, the
 following situation can be avoided:

 Obscure PAL language quirks can be problematic when literals
 are in effect. Novice programmers must avoid certain
 scenarios where the definition of certain symbols and values
 is dependent on the number of passes performed as well as
 specific addresses of generated literals.

 While dependence on specific literal addresses is very poor
 programming technique (and usually avoided by experienced
 programmers), it can be confusing to debug mystifying results
 obtained from PAL8; PAL8 binary output is created using
 symbolic definitions obtained at the end of pass one, possibly
 updated during pass two. However, PAL8 listing output may be
 created using symbolic definitions obtained at the end of pass
 two and possibly updated during pass three.

 Unless the programmer is careful to avoid pass-dependent
 definitions, the binary output may differ from the values
 indicated in the listing output (which may appear correct).
 Since P?S/8 PAL always creates all output during pass two,
 there cannot be pass-dependent differences between binary
 output and listing output. Relevant programming blunders
 should be discovered sooner using P?S/8 PAL (along with
 additional experience when the improper techniques are
 recognized and avoided).

Page 12 of 103

/P Enable wide-printing listing output. Note: This option
 primarily affects symbol table output allowing additional
 columns of printed symbols per page. (The expected output
 format changes from 72/80 columns to 132 columns as often
 implemented on lineprinters that use 11" x 17" ledger/tabloid
 paper stock.)

 Note: PAL8 only creates output for a minimal line width to
 (nearly) guarantee compatibility with narrow-carriage devices
 such as the LP01 lineprinter, despite the fact that most
 printers support 132 column mode; outputting to an LP01 may
 cause excessive truncation.

 P?S/8 PAL supports source statements significantly wider than
 PAL8. Where relevant, the listing output of P?S/8 PAL will
 avoid truncation (unlike PAL8) when assembling the identical
 source code.

 Note: PAL8 users must exercise caution when creating
 (somewhat) wide program statements. Due to quirks in the PAL8
 implementation, the precise number of characters leading to
 truncation problems varies with statement type and other
 unexpected issues.

 Depending on specific circumstances, a portion of the intended
 source statement may be truncated. This can unexpectedly
 change logical program flow.

 Warning: This is not merely a matter of truncating the
 listing output; rather, part of the source code statement may
 be ignored. Debugging unexpectedly truncated assembly
 statements may be difficult (especially when conditional
 assembly techniques are used in conjunction with the XLIST
 directive).

/T Prevent output to the system lineprinter. All output is
 directed to the system console terminal. See the description
 of the /N command-line option switch below.

/N Output niceties are applied to the listing output including
 titles on each printed page. If output is directed to the
 system console (instead of the system lineprinter), the output
 will produce alternatives to form-feeds by the use of tear-off
 lines instead of <FF> characters; this will ensure complete

 compatibility with system console devices that use roll paper
 such as the Teletype Model 33.

 Note: For systems lacking a lineprinter that support hard copy
 console terminals such as the LA36 (which can properly support
 <FF> characters), the Logical Console Overlay can be
 configured to redirect lineprinter output to the same physical
 device as that used for console output. For more information,
 consult documentation of the P?S/8 Logical Console Overlay
 available separately.

Page 13 of 103

 When the /N command-line option switch is set, one additional
 page of memory is allocated. See Section 2.13 below regarding
 memory management options for more information.

/K Enable assembly title text from each input file.

 When the /L command-line option switch is used in conjunction
 with the /N command-line option switch, the title field text
 for the entire assembly is taken from the first line of the
 first input file.

 Typically, assemblies are processed by concatenating the
 contents of multiple TFS text files. In most cases there is
 no particular connection between program sections in different
 files and intended assembly title changes; file boundaries are
 merely an independent file contents consideration.

 To maintain compatibility with PAL10 and PAL8, taking the
 title field characters from the first line of every input file
 can be enabled; the /K command-line option switch must be
 given along with the /L and /N command-line option switches.

 As long as each logically independent section of a program is
 contained within either an extended-length file (or a single
 TFS file such as a small parameter setup file), meaningful
 title changes can be properly managed.

 As a practical matter, intentional use of assembly title field
 updates via file breaks is used infrequently. For example,
 the source code of FOCAL, 1969 updates the title field only
 once during the entire assembly; as such, two extended-length
 text files (for the two main modules known as FOCAL and FLOAT
 respectively) support the intended title field changes during
 the assembly.

 Additionally, the title on the assembly can also be changed
 using other methods that are independent of file boundaries.
 See the description of the EJECT and TITLE directives in
 Appendix B of this document for further information.

 Note: A two-pass assembly will occur because the /L command-
 line option switch is set to create listing output. As such,
 the /K command-line option switch should only be used to
 enable title field text obtained from the first line of every
 input file. The alternate usage of the /K command-line option
 switch (to force a two-pass assembly) is moot in this usage.

/X Enable the creation of cross-reference output by loading the
 cross-reference module; an output element is created for each
 symbolic (and literal reference if any) as well as the
 associated statement number. Cross-reference data is created
 in statement order during the assembly; at the end of the
 assembly process the data is sorted and included as part of
 the overall listing output.

Page 14 of 103

 Enabling cross-reference output causes all listing output to
 be several columns wider due to the inclusion of the lowest
 statement number on the line at the left margin. (The PAL
 language allows multiple statements on a line separated by ;.)
 Statement numbers are unique in the range of 1 through 99999.

 Note: It is strongly recommended that cross-reference listing
 output with statement numbering be printed on 132 column
 lineprinters, especially if the /P command-line option switch
 is also enabled.

 If the /A command-line option switch is enabled, all symbolic
 references will generate cross-reference output; the default
 action is to reference only user symbols (and literals, if
 any).

 When the /X command-line option switch is enabled, two
 additional pages of memory are allocated. See Section 2.13 of
 this document regarding memory management options for more
 information.

 Implementation Restrictions.

 Due to changes planned for release with P?S/8 Version 9A
 (which is not yet available as of this writing), the cross-
 reference output is currently written to the system device
 logical unit 7 starting at block 0000; all prior contents of
 this device will be overwritten as necessary . No additional
 output of cross-reference data is available; no final data
 sorting or processing is provided in the current release. The
 cross-reference output is limited to the storage available on
 logical device unit 7 (since only one device is used).

 Once the cross-reference output programming is upgraded to
 allow allocation of extended-length files via a user-settable
 configuration table, this restriction will be eliminated.
 Significantly larger programs will be handled than presently
 possible on appropriate configurations (such as RK8E/RK05-
 based systems) due to the availability of multiple extended-
 length files to store reference data during the assembly.

 As of this writing, the processing of the cross-reference
 output is not fully implemented pending the changes described
 above with regard to cross-reference output data storage
 allocation issues; however, both statement numbering and
 creation of reference data are currently functional (although
 the cross-reference information is not currently accessible).
 Logical unit 7 must be available as described above when
 enabling this feature in the current release. (The
 availability of logical Unit 7 will become optional once this
 restriction is eliminated; extended-length files will be
 configurable on all available logical drive units when new
 options of the P?S/8 SET command are made available.)

Page 15 of 103

 Additional required changes will be made to the System
 Programs Directory (expected to be implemented in the next
 full release) in conjunction with other performance
 improvements.

 Note: PAL8 does not directly support cross-reference output.
 As an alternative, OS/8 listing files are reparsed by OS/8
 CREF (if enabled) as a post-processing utility. There are
 several disadvantages to this method:

a) The listing output of PAL8 is not a statement-by-statement
 listing file; statements hidden by the use of the XLIST
 directive (and related techniques) do not appear in the
 listing file. As such, the cross-referenced listing output
 is potentially incomplete; statement numbers are inherently
 inaccurate and untrustworthy.

 By way of contrast, P?S/8 PAL statement numbering is
 compatible with PAL10, which correctly shows processed
 statement numbers, revealing the presence of any hidden
 statements.

b) A valid technique for including documentation within PAL
 source code is to use deliberately failing conditional
 assembly on a section of commentary as large as an entire
 printable page of the listing. Content examples include
 details regarding program operation and banner pages of large
 character outlines created from a series of smaller
 characters; the nature of this form of output is limited only
 by the programmer's creativity.

 Unfortunately, CREF has no ability to discern this aspect of
 a PAL8 listing file as commentary; as such, the commentary is
 cross-referenced as if part of assembled code-generating
 statements. When banner pages are used, there can be
 numerous erroneous junk references to symbols that merely
 correspond to the individual characters used to build up the
 larger character layouts; as such, the cross-reference output
 can be cluttered with many superfluous references. Since CREF
 has limitations on overall symbol table size, this can have a
 deleterious effect on the overall capability of CREF. See c)
 and d) below.

c) CREF internally reckons statement numbers as 13-bit integers
 in the range of 1 through 8191 with an odd quirk: additional
 statements wrap back to 4096 instead of 1. As such, there
 is inherent anomaly in the cross-reference output regarding
 precise statement numbering of individual references.

 By way of contrast, P?S/8 PAL and PAL10 allow unique statement
 numbering in the range of 1 through 99999.

Page 16 of 103

d) CREF has limited overall capability. If the entire cross-
 reference cannot be accomplished in one pass, the program
 aborts unless the /M command-line option switch is set. If
 the /M command-line option switch is enabled, CREF operates as
 a rigidly-defined two-pass operation which may (eventually)
 allow the process to complete. However, each half of the
 overall operation must complete to obtain a successful overall
 result.

 Note: A quirk of the two-pass method used is the insertion of
 an extraneous <FF> in the output stream when the second pass
 begins. (This is documented but not explained.)

 The split-point for this so-called mammoth mode is set to the
 theoretical symbol LGNNNN. References to all symbols that
 sort lower than this value are scanned during the first pass
 while ignoring references to symbols that sort higher. The
 second pass processes all symbols that sort as LGNNNN or
 higher, including all references to current-page and page zero
 literals; the references processed in the first pass are
 ignored. Each pass must scan the entire listing file without
 symbol overflow.

 Because of the arbitrary nature of the split-point, it is
 possible for the overall cross-reference to fail because the
 program symbols are not balanced sufficiently to conform to
 this arbitrary scheme (for which there are no options).

e) Because of the inherently redundant nature of rescanning text
 files attempting to obtain information about the assembly
 without having access to the original symbol table and parsing
 techniques, CREF operates very slowly.

 By way of contrast, assembler-based cross-reference
 implementation has the advantage of only processing legitimate
 references to symbols and literals; commentary is ignored.
 Instead of rescanning entire listing files, the essential
 cross-reference data is scanned as many times as necessary to
 process all references; there is no arbitrary static split-
 point nor requirement of at most two passes on the far smaller
 set of data.

 Note: Many large PAL programs cannot be fully processed by
 CREF. This includes (ironically) the source code of P?S/8
 PAL (and many larger programs).

2.06 Literal and link options

Properly utilized, PDP-8 literal statements allow rapid implementation
of working programs. That said, certain compromises might arise:

Page 17 of 103

A PDP-8 programmer may be concerned with producing the smallest
possible coding for a specific program segment. Certain portions of
operating systems have stringent code space requirements with regard
to an extremely limited program structure such as a device handler.
Often the expediency of using literals must be abandoned in favor of
using a variety of tricks for which there is no analogue in other
computer architectures:

a) Intrepid programmers can create equivalent literal values in
 various ways. The techniques generally use either the
 contrived location of instructions to force generation of
 needed constants or the use of seemingly superfluous OPR
 statement conditions that can create fortuitous constants
 regardless of code position. In rare cases, multiple
 contrivances are used in concert to achieve even smaller
 binary code. The ability to perform extreme optimization

 techniques requires intimate knowledge of the PDP-8
 instruction set in terms of operation code values and bit wise
 specifics.

b) When the contrived literal values are achieved, the use of
 generated literal statements must generally be abandoned.
 As such, this extreme form of optimization contraindicates
 the convenience of using generated literals.

c) Purely for documentation purposes, some programmers use source
 code statements that include the specifics of the equivalent
 literal; however, that portion of the statement is part of an
 extended comment. This usage explains the intentions of the
 programmer prior to the optimization.

d) In general, the use of literals discourages code space
 optimization; as such, literals should be used if as and when
 appropriate. Many operating system components contain once-
 only initialization sections which are later repurposed as
 buffers or table/list space. It is totally appropriate to
 include literal statements within such code; generally, there
 is little to be gained using optimization techniques within
 these memory areas.

e) Beginning programmers are encouraged to learn the proper use
 of literals just after mastering the general instruction set.
 Code optimization is not a factor until the programmer is
 quite experienced. As required, programs can be (partially)
 optimized by removing literal statements as appropriate once
 the complexity of the project clearly demands optimization
 (after the basic structure has been realized).

Since PDP-8 code is generally efficient for most applications, a
common technique is the use of literals during early development,
perhaps in conjunction with conditional literals as described below.
Only when necessary, optimization techniques can be applied (while
simultaneously removing literal statements).

Page 18 of 103

Many of the system components of P?S/8 do not use literals while other
sections use literals in at least one of several contexts usually
related to program initialization. This includes the implementation
of P?S/8 PAL itself. Most conforming user-written programs use
identical techniques during development.

In P?S/8 PAL, literals and/or generated links are enabled using a
combination of command-line option switches as follows:

/Q Enable generation of current page and page zero literals.
 Link generation is disabled; attempts at off-page references
 will be treated as errors.

/O Enable generation of current page and page zero literals.
 Link generation is enabled; however, links will be flagged
 as errors.

/E Reset the current page literal extent when leaving the latest
 page.

 Note: The use of the /E command-line option switch requires
 some combination of the /Q and /O command-line option switches
 to be meaningful.

Enabling literal generation and/or link generation requires three
additional pages of allocated memory. See Section 2.13 of this
document for more information regarding memory allocation and related
issues.

Using the /Q command-line option switch in conjunction with the /O
command-line option switch will suppress error messages on generated
links; however, the count of links generated is always included in the
statistics page produced at the end of the assembly.

Assembly listing lines containing generated links will be flagged with
a ' character placed to the right of the generated instruction value.
This feature cannot be disabled in P?S/8 PAL, PAL8 or PAL10.

Note: PAL8 and PAL10 are compatible with P?S/8 PAL with regard to all
aspects of the disposition of generated link statements; however, all
features regarding literals in PAL8 cannot be disabled. See section
2.07 below for detailed warnings regarding generated links that apply
to all major PDP-8 assemblers.

2.07 Limitations of generated links

In general, generated links should be completely avoided; the shortest
version: Generated links do not work!Generated links do not work!Generated links do not work!Generated links do not work!

While this simple caveat ought to be sufficient, a study of the PDP-8
architecture reveals specific problems as follows:

Page 19 of 103

1) Link generation is an attempt to partially abstract and obfuscate
 the PDP-8 architecture. Unfortunately, this leads to sloppy
 programming techniques that (might) function while violating the
 hard-wired rules of the PDP-8 instruction set.

 A generated link is an indirect memory reference used to modify a
 malformed attempt at a direct memory reference that cannot be
 achieved; this is accomplished by using an address literal created
 in a manner analogous to that used within literal statements.

 The program specifies a direct memory reference that is impossible
 due to the violation of memory addressing rules; instead an
 indirect reference is automatically created by the assembler
 (assuming this feature is enabled). Since this process has much
 in common with the creation of literals, all other aspects of
 literal generation applies.

 The following assembled code fragment illustrates an attempt to
 violate the rules of the PDP-8 instruction set; the flawed
 statement is flagged as an error because link generation was not
 enabled.

 *0200 *200 /TYPICAL START ON PAGE 1.

 IR 0577
 000200 1377 TAD 577 /THIS REALLY CAN'T WORK

 The attempted usage cannot be achieved since the operand is outside
 of the allowed address range (0200-0377 in this instance); location
 0577 is part of the following page (0400-0577). For an example
 such as this, locations on any page from 2 (0400-0577) through 37
 (7600-7777) are equally inaccessible. The instruction is flagged
 with the IR error message (Illegal Reference).

 The next example is the identical code fragment assembled with link
 generation enabled. No errors are indicated, but the statement is
 flagged with ' indicating link generation.

 *0200 *200 /TYPICAL START ON PAGE 1.

 000200 1777' TAD 577 /THIS REALLY CAN'T WORK.
 *0377
 000377 0577

 The generated code is an indirect instruction in the range of 1600-
 1777 as a consequence of the modification; (a direct instruction
 would be in the range of 1200-1377). The code also creates an
 address constant; the table of literal/link addresses is dumped at
 the end of the assembly (unless instructions exist past this
 section to cause this page's literals to dump sooner).

Page 20 of 103

2) If link generation is enabled, the same source code produces
 flagged output. The instruction at 0200 is changed to TAD I 377.
 Additionally, location 0377 is generated containing 0577. Ignoring
 for the moment the instruction is now an indirect reference to 0577
 using the pointer address 0377 as an intermediary, to a naive PDP-8
 programmer (unaware of the potential negative consequences), the
 intended logic is satisfied: the contents of location 0577 are
 added to the accumulator.

 Note: In these coding examples, symbolic references are
 deliberately not used to avoid clouding the issues. Actual
 attempts at link generation are usually expressed in symbolic form.
 Had the code been located in an accessible location, no link would
 be required. Links often come about when code overflows the
 intended page into the next page. By using purely numerical
 statements, the results are easily revealed.

3) To the inexperienced programmer, the program fragment works per se.
 Unfortunately, in real PDP-8 programming, considerations outside of
 this example tend to crop up; programs that had worked suddenly no
 longer work and might also cause unavoidable assembly errors of a
 kind that merely enabling link generation cannot remedy.

 This programmer might be tempted to use a location already
 inaccessible (due to being located past the current page) as a
 pointer. The assembler will appropriately mark this with the error
 message II (Illegal Indirect). Since it takes a pointer to access
 indirectly the address of the pointer, it is not possible to use it
 indirectly. Had the programmer obeyed PDP-8 instruction rules,
 this would have come about without unexpected surprise.

 Before investigating the insidious nature of link generation
 failing to work when no error messages occur (just generated link
 flagging), it will be shown that certain forms of generated links
 actually work as intended, as long as the link generation mechanism
 is not pushed to the point of impossibility.

 In all cases, links involving Direct JMP or Direct JMS instructions
 properly function in the sense described above. (Statements
 attempting link generation of the form JMS I or JMP I cannot
 function as explained above.) If this were the only issue, lazy
 programmers might have a valid excuse to enable link generation.

 Unfortunately, all of the other forms of link generation may fail
 depending on the exact nature of the running program; the assembler
 cannot have knowledge of the programmer's intentions in the dynamic
 sense.

Page 21 of 103

 Repeating the generated link example from above:

 *0200 *200 /TYPICAL START ON PAGE 1.

 000200 1777' TAD 577 /THIS REALLY CAN'T WORK.
 *0377
 000377 0577

 A possible use of the example program includes manual start from
 the computer front panel; this allows setting the data field (DF)
 to a non-zero value in the range of 1 through 7.

 When started this way, the program does not accomplish the intended
 function; the contents of location 0577 in the data field are added
 to the accumulator.

 In general, PDP-8 programs are written for the 32K memory address
 space. The data field is often used as an internal convention of
 the program logic. When the program uses direct references (as the
 nominal statements attempt to do in the example), the data field
 plays no role in the logic of the program. Programmers who never
 enable link generation are certain their programs function as
 expected (as long as no other statements are flagged with errors).

 Note: Lack of generated links is no guarantee there are no logic
 errors in the program; however, at least this area of bad design is
 avoided.

4) As soon as extended memory factors creep into the logic of a
 program dependent on link generation, insidious failures start to
 occur. The programmer who never learned the discipline required to
 avoid this programming pitfall is now faced with a nearly insoluble
 dilemma. The only remedy to this situation is to bite the bullet
 so to speak, eliminating all generated links as a first step
 towards debugging the program; by preventing the attendant error
 messages much of the problem will be eliminated.

 Note: Cleaning up after link generation might involve a large
 expenditure of effort all at once; had links never been used, the
 work necessary to eliminate assembly errors might have been
 accomplished in small increments. (And perhaps in the proper time
 frame to remember the constraints on the code as intended; all
 programmers are incapable of remembering everything, some sooner
 than others.)

In short, link generation correctly functions only if Direct JMP or
Direct JMS instructions are involved. Link generation fails to work
if any form of AND, TAD, ISZ or DCA instructions are involved because
the logic is at the mercy of the very real possibility the data field
(sometimes) doesn't match the instruction field when the program
executes. (Or the prevailing data field might change in a future
variation of the overall program.)

Page 22 of 103

Positing a stubborn and lazy PDP-8 programmer (the author has met
people who fall into this category; their careers as PDP-8 programmers
who use generated links are always short), one of those who insist on
using link generation despite all the warnings; their excuses are
invariably within the list as follows:

 a) Use only JMP and JMS links.

 b) Never use the cases that cannot work and count how many links
 are generated in the assembler statistics page every time to
 ensure nothing important has changed.

 There are inherent logical fallacies in a) and b) above.

 c) One can only assume a) is true; it is necessary to check the
 entire program to ensure this is the case. Confirming this
 is far more work than merely avoiding link generation.

 d) The count of links generated may be the same as in a previous
 assembly. However, this is still no guarantee all of the
 generated links avoid the impossible cases; if the code is moved
 around sufficiently, a JMP or JMS link could drop out and be
 replaced with one of the impossible cases in terms of the
 assembler's generated links tally. It is still necessary to
 carefully check the entire program as in c) above; the
 unfortunate need for additional work still applies.

 e) In general, people this stubborn are hypocritical. They will
 tend to use the potentially impossible form of generated links
 claiming certain knowledge of the data field throughout the
 entire program. This makes them vulnerable to the various
 insidious problems described earlier.

 f) When cross-field calling conventions are established in
 meaningful programs, it is likely belatedly understood just how
 problematic the burden of link generation actually is. The work
 involved in elimination of the problems can be profound.

 g) In the case of P?S/8 PAL, PAL10 and PAL8, additional option
 switches must be set to suppress error messages associated with
 link generation. This is by design, as the developers of
 successful PDP-8 operating systems virtually never use link
 generation; they are trying to guide programmers to success in
 PDP-8 programming in the sense of leading by example.

2.08 Literal statement examples

P?S/8 PAL supports the two general forms of literal generation along
with a unique third form that can shorten program development time:

Page 23 of 103

a) Current page literals - The operand address is located on the
 current page of the program; the address is assigned by the
 assembler starting at relative location 177. Additional
 literals are created in reverse order; a second current page
 literal is placed at relative location 176.

 The maximum number of current page literals allowed is 63
 (decimal) in the relative range of 101-177. When a statement
 contains a current page literal, the current page literal
 table is searched for a matching value. If successful, the
 existing literal address is used. New values create
 additional current page literals. When either too many
 current page literals are attempted or statements on the
 current page overflow into the literal table, a PE (Page
 Exceeded) error message is displayed.

 A typical current page literal usage follows:

 TAD (3) /ADD 0003 TO THE ACCUMULATOR.

 Note: The trailing right parenthesis character is optional
 unless nested expressions are used.

b) Page Zero literals - The operand address is located on Page
 Zero; the address is assigned by the assembler starting at
 location 0177. Additional literals are created in reverse
 order; a second Page Zero literal is placed at location 0176.

 The maximum number of Page Zero literals is 112 (decimal) in
 the range of 0020-0177. (Locations lower than 0020 are
 disallowed due to the special auto-index characteristics of
 locations 0010-0017 when indirectly referenced.)

 When a statement contains a Page Zero literal, the Page Zero
 literal table is searched for a matching value. If
 successful, the existing literal address is used. New values
 create additional Page Zero literals. When either too many
 Page Zero literals are attempted or statements on Page Zero
 overflow into the literal table, a ZE (Page Zero Exceeded)
 error message is displayed.

 A typical Page Zero literal usage follows:

 TAD [3] /ADD 0003 TO THE ACCUMULATOR.

 Note: The trailing right square bracket character is optional
 unless nested expressions are used.

Page 24 of 103

c) Conditional literals - The operand address is either on the
 current page or on Page Zero depending upon specific
 circumstances. If a matching Page Zero literal value exists,
 it will be used. Failing a Page Zero match, If a matching
 current page literal exists, it will be used. Failing both a
 Page Zero match and a current page match, a new current page
 literal is created (subject to the possibility of a PE error
 if the current page overflows).

 A typical conditional literal usage follows:

 TAD #3 /ADD 0003 TO THE ACCUMULATOR.

 The actual code generated is dependent on the literal pools in
 effect at the point in the assembly the usage is encountered.

 Note: Since there is no corresponding closing character, it is
 impossible to create nested conditional literal expressions.

 A common technique employed in well-developed programs is the
 use of source code libraries of commonly used subroutines.
 It is desirable to use Page Zero literals where appropriate.
 However, Page Zero literals should not be used if there are
 only singular references. By using conditional literals, more
 effective management of memory is achieved without the need to
 hand-optimize the library source code statements containing
 literals.

 Additional information about conditional literals and related
 subjects can be found in Appendix C of this document.

 Note: This feature is not supported by PAL10 or PAL8.

2.09 Literal extent issues

In general, all literals associated with any current page should be
defined in proximate order to the code statements referencing them.
This facilitates locating any potential matches to avoid creating
additional literals (if possible).

Leaving the present page, the existing literals are dumped to finish
the intent and requirements of all source code statements defined so
far.

If this page is ever revisited during the assembly, it is possible to
define additional literals because the literal extent value formerly
in effect was saved and will be restored. However, since the actual
former literals have been dumped, every new literal statements will
only be able to cause a search for a match within the newly-created
literal pool subset.

Note: This feature, while enabled by default, is hardly used. It is
supported primarily to maintain compatibility with the literal
generation features of PAL10 and PAL8.

Page 25 of 103

If the /E command-line option switch is used, the literal extent when
leaving a current page is reset; no history of previous literals on
any current page is retained.

Note: The use of the /E command-line option switch does not impact
page zero literals (which are completely reset upon either the end of
the assembly or the use of the FIELD directive). In certain PDP-8
documents, this is referred to as forgetting current page literals.

Resetting literal extents is useful when defining overlays. The
overlay code must be created in the context of another section of the
assembly which presumably will be replaced in memory by the overlay
code; however, the overlay code must maintain its own current page
literals as required.

while there are many techniques associated with the deployment of
overlays, the /E command-line option switch is always required to
allow overlays to maintain their own current page literal pools within
the overlay section.

Note: Future implementations of P?S/8 PAL (or a new assembler for the
P?S/8 SHELL based on P?S/8 PAL tentatively to be known as PALX or
perhaps XPAL) will likely invert the default condition regarding
literal extent retention due to disuse of the current default; as a
practical matter, sections of program code that revisit formerly used
pages are virtually always part of an overlay structure. There are no
justifiable reasons to deliberately separate small program sections
that load on the same code page.

2.10 Dual assembly mode options

P?S/8 PAL is the only known PDP-8 assembler that fully supports LINC
mode assembly including conditionals and one's complement arithmetic,
literals, large assemblies and the full complement of PDP-8 assembler
features (including conditional assembly features generally associated
with the LAP6-DIAL/DIAL-MS embedded assembler).

Note: While LAP6-DIAL/DIAL-MS only runs on the PDP-12 computer, P?S/8
PAL does not require LINC hardware to assemble LINC mode programs.
Additionally, the LAP6-DIAL/DIAL-MS embedded assembler does not
support literals and many other standard PDP-8 assembler features.

Dual assembly is enabled in P?S/8 PAL as follows:

/8 Enable LINC mode assembly; the default operating mode is
 PDP-8 mode (PMODE). While not strictly necessary, it is good
 practice when enabling dual assembly to state the desired
 initial operating mode; this is equivalent to using the PMODE
 directive. The current location counter is set to the usual
 PDP-8 starting value of 0200.

Page 26 of 103

/9 Enable LINC mode assembly; the default operating mode is LINC
 mode (LMODE). While not strictly necessary, it is good
 practice when enabling dual assembly mode to state the desired
 initial operating mode; this is equivalent to using the LMODE
 directive. The current location counter is set to the usual
 LINC starting value of 4020.

 Enabling the dual mode assembly module requires the allocation
 of three additional pages of memory. Consult Section 2.13 of
 this document for more information regarding memory allocation
 and related issues.

2.11 Dual mode assembly tips

While it is good practice to start dual-mode coding with the
appropriate mode directive, it is possible (using conditional assembly
techniques) to determine the current assembly mode. References to the
current definition of the HLT instruction (which will be 7402 in PMODE
and 0000 in LMODE) can determine whether LMODE or PMODE is in effect.
Critical programs can abort the assembly if it is determined the
assembly process is not in keeping with source code requirements
(which could include failure to enable LINC mode assembly).

While the use of literals generally applies to PDP-8 code, certain
language features can be adapted to LINC mode programming using
appropriate addressing restrictions. Advanced users can contrive
viable cases (minimally) worth pursuing.

In general, LINC programming does not require literals due to
significantly different addressing modes. Immediate mode addressing
conceptually replaces literals because the immediate mode operand
cannot be (efficiently) used in other instructions. Immediate mode
can specify the address of common variables; this can be likened to
the use of literals. If the addresses can be contrived to conform to
PDP-8 page addressing, actual PDP-8 literals can be used obtaining the
intended results.

Note: Any form of arithmetic expression used to calculate LINC mode
addresses is performed using one's complement arithmetic.

All LINC instructions on the PDP-12 and the classic LINC are
implemented in hardware. On the LINC-8, certain instructions are
trapped and emulated using a support program known as PROGOFOP
(PROGram OF OPeration). PROGOFOP is required for 100% emulation
support; however, short sections of LINC programming can be initiated
by PDP-8 programming with interrupt-handling optional.

Note: The PDP-12 also supports an alternate form of trap simulator to
allow programs written for the classic LINC and/or LINC-8 to be run as
intended, perhaps with alternate interpretation of the LINCtape class
instructions. For more information, consult DEC documentation of the
PDP-12 trap simulator.

Page 27 of 103

2.12 LINCtape information

P?S/8 and OS/8 configured for PDP-12 TC12 LINCtape operation use 128
words/block LINCtapes; LAP6-DIAL/DIAL-MS uses 256 words/block
LINCtapes formatted significantly longer than the maximum length
handled by the classic LINC (512 blocks maximum). However, certain
DIAL-MS configurations have limitations when accessing blocks larger
than the classic LINC limit (0777 octal) such as when logical storage
units are implemented on the RK8E/RK05.

This is apparently caused by some internal confusion about the size of
a logical unit sometimes allowed to be exceeded by hardware
limitations; the RK05 is arbitrarily divided into logical units
exactly the size of the classic LINC tape storage as opposed to the
typical amount of storage available on the DIAL-MS extended-length
LINCtapes. Perhaps further information can be obtained from
maintenance programmers, since this was a later add-on to this system
and not part of the original system as created primarily by Jack
Burness; the rest of DIAL-MS predates the existence of the available
hardware (the RK8F added to a DW8E-P).

Utilities to access 256 words/block LINCtapes require custom
programming specific to each machine. To transfer assembled programs
to the classic LINC requires a custom image utility that runs under
the current operating system; conventions for LINC operating systems
vary widely, other than the same underlying LINCtape format. LINC
systems cannot access 128-word LINCtapes associated with P?S/8 and
OS/8; using custom programming, the LINC-8 can handle all formats
because the underlying hardware is actually a PDP-8 storage
peripheral. The PDP-12 TC12 LINCtape subsystem supports extended
operations to work with any viable LINCtape format. P?S/8 PAL can be
instrumental in creating appropriate utilities as needed.

P?S/8 PAL includes all common LINCtape instruction definitions as used
on the LINC, LINC-8 and the PDP-12. These are generally double-word
instructions with block information in the second word immediately
following the LINCtape instruction.

Note: No useful purpose is served creating 129 words/block LINCtapes
for use with P?S/8 or OS/8 on the PDP-12. There are only downsides to
doing so as follows:

a) The only reason 129 words/block LINCtapes exist is because the
 most common LINCtape formatting programs on the PDP-12 were
 created as part of the LAP6-DIAL/DIAL-MS operating system.
 Ignorant decisions were made to only provide 129 word format
 (when choosing other than 256 words/block options). There are
 no circumstances where this option is ever constructively
 used. (Contrast this with LINC-8 MARK program (MARKL8)
 options that generally include standard 256 words/block
 LINCtapes and 128 words/block LINCtapes only.)

Page 28 of 103

 Note: It is understandable how this blunder came about. Only
 those familiar with PDP-8 DECtape software understand the
 relevant reasons (and apparently the software staff of the
 LAP6-DIAL/DIAL-MS project were not aware of any of this and
 likely guessing). Only the Disk Monitor on DECtape actually
 uses the 129th word on DECtape blocks for data purposes. All
 other supported systems use the first 128 words of each block.
 Thus, the 129th word is ignored and merely present because all
 DECtapes must be an integer multiple of 18-bit words for
 compatibility issues that do not pertain to LINCtapes.

 The P?S/8 version of the MARK12 formatting program is modified
 to create 128 words/block LINCtapes as used on the LINC-8 and
 PDP-12; this applies equally to both P?S/8 and OS/8 on both
 hardware configurations.

 Note: The source code for the P?S/8 version of MARK12 (as well
 as the companion TC12F program for DECtape and LINCtape
 conversion) can be assembled with P?S/8 PAL using the /9
 command-line option switch to enable dual-mode assembly
 starting in LMODE.

b) Both P?S/8 and OS/8 for PDP-12 LINCtape support a nuisance
 feature to allow reduced functionality on 129 words/block
 LINCtapes. When 129 words/block format is used, the memory
 location following the read/write buffer can be corrupted
 during a read operation. As such, all relevant handlers for
 both systems preserve the potentially-destroyed word, then
 restore it after the read has completed. This also means that
 system device handlers for both operating systems must be able
 to function while potentially the contents of location 07600
 are at risk. As such, there is a small chance that if the
 computer is manually restarted at an improper moment in time,
 the system device handler might become corrupted.

 The circumstances that arise for this potential problem are
 actually quite common; any core-image program that loads into
 07400-07577 is potentially at risk for destruction of the
 system kernel that starts at 07600.

c) The LINC-8 system (and non-system) device handlers for P?S/8
 and OS/8 cannot handle the 129 words/block format LINCtapes.
 In fact, no software exists to read or write such tapes on the
 LINC-8 presently. (Specific conversion software would be
 necessary to manage this situation which is totally avoidable
 if the proper tape format is used. For example, LINCtapes can
 be formatted on the LINC-8 with 128 words/block and copies of
 the LINCtapes intended to be read on the LINC-8 can be written
 on the PDP-12.)

Page 29 of 103

d) All tape transfers are degraded slightly by the presence of
 the erroneous 129th word. This is because all blocks of the
 tapes are needlessly longer; extra time is needed to move the
 tape past all blocks between the present tape block position
 and the target block during any read or write transfer.

e) Since each block is needlessly longer, the maximum number of
 blocks that can be utilized is needlessly foreshortened.
 Several standard tape lengths are generally supported. This
 will tend to make certain tapes ineligible for extra-long
 formatting considerations unless 128 words/block is used.

f) As a long-term consideration, there is needless increased
 wear and tear on tape media and drive tape guides.

2.13 Memory management options

/C Enable internal reconfiguration of assembler resources. This
 may allow certain assembly configurations on smaller machines
 to be viable at the expense of overall performance. See below
 for additional configuration details.

P?S/8 PAL is designed to run on 4K or larger machines; additional
memory, if available, is used to allow a larger symbol table which is
generally the limiting factor with regard to overall program size that
can be successfully assembled.

When P?S/8 PAL is first loaded, the passed command-line option
switches are checked to determine the running configuration size with
regard to modular assembler components retained once the assembly
process begins. Deselected modular sections are removed; retained
modular options are then relocated as required to maximize the space
available for symbol table and input/output buffers.

Depending on options selected, it is possible that attempts to load
the symbol table can overflow the assembler's capabilities; the
selected configuration cannot function with standard allocation of
input/output buffers.

To achieve a viable configuration, the number of input/output buffers
can be reduced; memory space is then made available for additional
symbols. The assembly process will take longer due to fewer pages
allocated as buffers (but will more likely succeed while handling more
symbols).

To gauge the magnitude of the problem on 4K systems, the following is
a list of the extra memory allocation requirements (over the minimum
needed for an assembly without any modular sections retained):

a) Niceties related to the /N command-line option switch (fully
 formatted headers on specific aspects of the listing output)
 requires one additional page.

Page 30 of 103

b) Literal and/or link generation requires three additional
 pages.

c) Enabling dual mode (LINC) assembly requires three additional
 pages.

d) Enabling cross-referenced listing output requires two
 additional pages.

Each page reallocated for symbol table usage adds the ability to
support 32 additional symbols; an assembly with no modular options
retained can support 288 additional symbols over the included internal
symbol table.

If the /C command-line option switch is set, the input and output
buffers are reduced to a minimum complement causing the assembly
process to take considerably more time; however, sufficient memory
space becomes available to support any combination of the modular
program options as described above.

P?S/8 PAL is designed to dynamically take advantage of additional
memory if available. On all systems with 8K, at least another 3K of
memory is available for the symbol table; as such, all modular
components can generally be retained without restriction for most
assemblies.

Note: Certain P?S/8 configurations reserve the highest 1K (quarter
memory field) available for the system device handler extension. For
all systems that do not require the handler extension, the full
additional 4K of memory can be made available to P?S/8 PAL (and other
programs).

When 7K (or more) memory is available, symbols are not stored in field
0. The /C command-line option switch can be used to sacrifice
performance while allowing additional symbols residing in field 0.

The maximum number of symbols allowed is 4095 (including all permanent
symbols and directives). If 16K of memory is available for symbols
(20K total memory or more), there is no point in enabling the /C
option other than to perform timing tests to measure the resulting
performance degradation; the exact configuration with regard to the
modular options becomes moot for larger machines.

Note: PAL8 requires 24K (or more) memory to support the maximum symbol
table size of 4095 symbols due to certain design limitations of OS/8
that fractionalize every memory field.

Page 31 of 103

2.20 P?S/8 PAL assembler performance

P?S/8 PAL performance was compared to PAL8 using a deliberately biased
configuration (in favor of OS/8) (and a stopwatch for accuracy).
While P?S/8 PAL took twice as long to assemble a large file chosen at
random from various OS/8 source programs under development at the
time, the P?S/8 configuration was based on TC08/TU56 DECtape while the
OS/8 configuration was based on the RK8E/RK05 removable cartridge disk
(which is a much faster system at the hardware level). Given the
overhead of the underlying system devices, it is estimated that P?S/8
PAL can assemble large programs as much as four times as fast as OS/8
PAL8 on identical hardware configurations.

Note: Performance of the P?S/8 BIN Slurp format binary loader was
compared to OS/8 ABSLDR on the same configuration. The DECtape-based
P?S/8 Slurp binary loader successfully loaded binary files into memory
twice as fasttwice as fasttwice as fasttwice as fast as OS/8 ABSLDR on the RK8E/RK05. This seemingly
counterintuitive feat, when demonstrated to various DEC PDP-8
programming group employees, induced a state of cognitive dissonance.
They could not comprehend the notion that a DECtape could somehow
perform faster than an RK05. (Those familiar with the internal design
of both operating systems better understand this predictable result.)

2.30 Additional binary chaining options

Various options of the P?S/8 BIN utility apply during a successful
chain operation. Assuming no assembly errors, chaining to P?S/8 BIN
is generally used for the purpose of loading the binary output files
created during the assembly.

Note: See the description of the /W command-line option switch below
for the alternate purpose of chaining to P?S/8 BIN for the purpose of
punching binary paper-tapes.

As explained above, chaining to P?S/8 BIN creates a list of binary
input files derived from the list of output files created during the
assembly; this list may have been obtained from explicitly passed
output files, or as a result of some particular combined usage of the
/B, /D and /U command-line option switches. As necessary, the list
may have been truncated if excess output files were specified.

The following additional command-line options of P?S/8 BIN apply if
set in the original P?S/8 PAL command line:

/G Chain to P?S/8 BIN for the purpose of either loading the
 binary files created during the assembly or punching binary
 paper-tapes of the binary files (if the /W command-line option
 switch is also set). The chain is inhibited if there are
 assembly errors.

/V Enable the virtual Slurp format binary file loader instead of
 the hardware-specific Slurp format binary file loader (if
 relevant).

Page 32 of 103

 Where possible, P?S/8 BIN loads binary input files using an
 implementation of the Slurp format binary loader as originally
 defined by Richard Lary for the R-L Monitor System. The P?S/8
 variant supports loading anywhere within the 32K PDP-8 memory
 space (albeit with restrictions that apply to system-reserved
 memory areas).

 Specifics of the P?S/8 system configuration will indicate
 whether a hardware-dependent Slurp format binary loader is
 available; only certain configurations support a device-
 specific Slurp format binary loader.

 On systems that do not include a device-specific Slurp
 format binary loader, a virtual Slurp format binary loader is
 used that requires the presence of the system device handler.
 Other than certain performance issues and minor tradeoffs, the
 two loaders perform the same overall function.

 If the /V command-line option switch is set, the virtual Slurp
 format binary loader is used instead of the device-specific
 Slurp format binary loader. This is a user preference option
 (assuming the device-specific Slurp format binary loader is
 available); it may be desirable to force usage of the virtual
 Slurp format binary loader in certain circumstances.

/I If a device-specific Slurp format binary loader is available,
 the system device handler is reloaded after all binary files
 are loaded. As a minor restriction, it is not possible to
 pass the maximum input file count of 17 input files; the
 maximum input file count is reduced to 16 (which is generally
 of no consequence to most users and actually impossible when
 chaining from P?S/8 PAL because at least one input file is
 required to create binary output).

 Note: If the virtual Slurp format binary file loader is in
 effect, the /I command-line option switch is ignored; the
 slight restriction on maximum binary input files does not
 apply.

 If a device-specific Slurp format binary file loader is in
 effect and the /I command-line option switch is not set, the
 system device handler will not be available; however, a
 device-specific bootstrap will be placed into locations 07600-
 07642 to allow program exit to 07600 in a manner consistent
 with the system device handler being present. (Starting the
 bootstrap code will reload the P?S/8 keyboard monitor.)

 Note: While the starting location of the device-specific
 bootstrap is always 07600, the ending address is always
 assumed to be the largest case allowed for any and all P?S/8
 system configurations (presently 07642); for certain device-
 specific bootstraps, this may cause superfluously moving
 additional words beyond those actually required to function.

Page 33 of 103

 Moreover, the largest case allowed is scheduled to be reduced
 to 07641 in future releases of P?S/8; this is due to

 considerations where the device-specific bootstrap code is
 utilized unrelated to binary chaining to P?S/8 BIN from
 P?S/8 PAL as discussed in this document. As of this writing,
 the longest existent device-specific bootstrap is slightly
 shorter than either the present or planned limit address.

 For all systems requiring a system device handler extension,
 it is likely (in all future releases of P?S/8), the bootstrap
 for all such systems will conform to the following:

CIF x0 /CIF TO THE HIGHEST MEMORY FIELD.
JMP 7600 /CONTINUE THERE.

 As such, all systems requiring a system device handler
 extension section will produce the smallest bootstrap starting
 at 07600. In these instances, moving additional words will be
 irrelevant. (At least one configuration already conforms to
 this convention as of P?S/8 Version 8Z.)

/H All user memory is preloaded with 7402 (the PDP-8 HLT
 instruction) before binary file loading. This is highly
 recommended when debugging programs under development to
 prevent unexpected loss of control.

/Z All user memory is preloaded with 0000 (the LINC HLT
 instruction) before binary file loading. This is highly
 recommended when the program under development contains
 numerous LINC instructions or it is expected the binary
 output may ultimately be saved in core-image format; unloaded
 locations will show 0000 in any form of memory or storage
 block dump printout.

 P?S/8 can create a core-image of a program currently under
 development (using the GET /Z command, or as a result of a
 chaining operation as described above passing the =7632 value
 and the /V or /I command-line option switch) for further
 processing. The resultant core-image blocks can subsequently
 be transferred to pairs of named TFS files which can later be
 restored to the % and $ files if deferred execution or
 debugging is desired.

 Note: The P?S/8 GET program is an alias of the P?S/8 BIN
 program. The only functional difference is the starting
 address will be forced to 07632 (by clearing the /1 through /7
 command-line option switches and forcing the =7632 parameter
 value) before otherwise starting the P?S/8 BIN utility program
 (for the purpose of loading binary input files into memory).
 The user can also invoke these parameters in an explicit
 keyboard monitor command executing the P?S/8 BIN utility.

Page 34 of 103

 Future releases of P?S/8 will include the SHELL overlay
 (currently under development) which will support versions of
 the ENCODE and DECODE programs (currently available as part of
 the Kermit-12 program collection for OS/8). Core-image files
 created in the P?S/8 SHELL environment (through means
 analogous to the GET command usage as described above) passed
 through the ENCODE program will produce smaller output files
 due to the compression of uninitialized storage locations.

If the optional =xxxx numerical value is passed, the value xxxx is
used as the program starting address; the default program start field
is 0. Assuming the program will be started after loading, specifying
any of the following option switches will apply as necessary:

/1 The program will start in field 1 at location xxxx as
 specified in the =xxxx passed numerical value.

/2 The program will start in field 2 at location xxxx as
 specified in the =xxxx passed numerical value.

/3 The program will start in field 3 at location xxxx as
 specified in the =xxxx passed numerical value.

/4 The program will start in field 4 at location xxxx as
 specified in the =xxxx passed numerical value.

/5 The program will start in field 5 at location xxxx as
 specified in the =xxxx passed numerical value.

/6 The program will start in field 6 at location xxxx as
 specified in the =xxxx passed numerical value.

/7 The program will start in field 7 at location xxxx as
 specified in the =xxxx passed numerical value.

Note: All of the options stated above assume the /W command-line
option switch is not set (to allow binary file loading).

If the chain to P?S/8 BIN is for the purpose of an assemble-and-
 punch operation to create binary paper-tapes, the following

command-line option switches will apply:

/W The /G command-line option switch is set; the chain to P?S/8
 BIN will be used to punch binary paper-tapes if there are no
 assembly errors (else the chain to BIN will be prevented).

/F The default device for the binary paper-tape output is the
 low-speed console device paper-tape punch found on various
 console terminals such as the Teletype Model 33 ASR and Model
 35 ASR (device 04). If the /F command-line option switch is
 set, the binary output is directed to the high-speed punch
 (device 02).

Page 35 of 103

/R By default, the paper-tape output is punched in DEC BIN
 format. If the /R command-line option switch is set, the
 output format used is enhanced DEC RIM format (which includes
 a checksum allowing the binary paper-tape to also be read by
 the DEC BIN loader).

 Note: the /0 command-line option switch is not passed to P?S/8
 BIN as it has alternate meaning within P?S/8 PAL. See Section
 2.50 for additional details.

2.40 Text management options

/J Prevent generation of a zero-fill word (0000) after text
 strings with an even count of characters. This applies to all
 usage of the TEXT and SIXBIT directives.

2.41 Text directive issues

The PAL language defines the TEXT directive which is used with a
string argument. The string consists of an indefinite number of
printable characters preceded by a delimiter character which cannot be
included in the generated text; the string ends with a second usage of
the delimiter character.

Note: P?S/8 PAL does not require the trailing delimiter character
unless there are multiple statements on the same line.

Early implementations of the TEXT directive restricted the delimiter
character to ", ' and in some cases @ (which is not supported by P?S/8
PAL and other assemblers). The use of " or ' as text delimiters is
recommended for maximum compatibility with other PAL assembler
implementations; P?S/8 PAL and PAL8 support an extension allowing any
printing character not contained within the text string to be used as
the delimiter character.

All usage of the TEXT directive creates strings of six-bit ASCII text
characters packed two per 12-bit word. If the count of characters in
the string is an odd number, the last 12-bit word has 00 in the low-
order six bits (which generally is used as a string delimiter).

Since the most likely usage of the TEXT directive is to generate
strings used with printing subroutines, the default action for string
arguments with even character counts is to generate an additional
12-bit word of 0000 to ensure the presence of a string delimiter.

TEXT directive usage is not limited to string creation as described
above; some alternate schemes use internal printing characters as
delimiters or other control mechanisms. Within the P?S/8 keyboard
monitor coding, explicit string length arguments are used in some
instances; in other cases the string length is an implicit constant
value. The 00 word plays no role in any of these cases; as such,
creation of an extra 12-bit word of 0000 can be undesirable.

Page 36 of 103

Note: Early PDP-8 programs such as FOCAL, 1969 were developed on
systems incapable of modifying the output of the TEXT directive; as
such, the source code includes statements to backup the assembler
current location counter to allow the desired contents which differs
from the automatically generated 0000 value. Ironically, this form of
source-level workaround is incompatible with the /J command-line
option switch (which eliminated the problem several years after FOCAL
was developed).

As documented above, setting the /J command-line option switch
prevents the creation of the extra 12-bit word of 0000 on even count
text strings. It is strongly recommended the disposition of the /J
command-line option switch be documented at the beginning of all
source code; in many cases, this may be the only departure from
assembler default settings and could easily be overlooked.

2.42 Other text-related issues

P?S/8 PAL supports the SIXBIT directive which uses the same overall
format as the TEXT directive. The only difference is the internal
six-bit code used is not the PDP-8 standard six-bit subset of the
ASCII character set; instead, an alternate definition of six-bit text
(as used on DEC 18-bit and 36-bit computers) applies.

The basic difference between the two character sets is the highest of
the six bits used is inverted. Input processing of seven-bit ASCII
characters to six-bit code is easier using the PDP-8 standard while
output processing of six-bit code to seven-bit ASCII characters is
easier using the alternative standard. The PDP-8 standard was chosen
largely because there are often multiple input routines while output
is generally performed by a single output routine. For most
programmers, it is easier to observe TEXT-related six-bit code to
relate to the corresponding original seven-bit ASCII characters.

Note: PAL8 and PAL10 do not support the SIXBIT directive.

The DEVICE and FILENA{ME} directives are supported by P?S/8 PAL and
PAL8. These are special-purpose text directives to create a four-
character and eight-character text string respectively. Early OS/8
programs required the use of the /J command-line option switch (or its
equivalent in PAL8 which is the /F command-line option switch); while
this allows creation of the intended string arguments, compatibility
is not possible with the usual string printing applications, which
require even-length string termination with a trailing word of 0000.
With the availability of the DEVICE and FILENA{ME} directives, the
normal flexibility of text string creation choice is restored.

Note: P?S/8 supports the FILENA{ME} directive for compatibility
purposes only. Future P?S/8 systems will support the P?S/8 SHELL with
an extended assembler based on P?S/8 PAL to be known as PALX (or
perhaps XPAL). PALX (or XPAL) may support an option to extend the
FILENA{ME} directive (or some functional equivalent) to support SHELL
directory file name conventions which are as follows:

Page 37 of 103

a) OS/8 file names have six significant six-bit text characters.
 As such, all of the characters are upper-case alphabetic or
 numeric characters.

 OS/8 file name extensions are two characters or less in the
 same character set as the file name.

b) P?S/8 SHELL file names have twelve significant six-bit text
 characters. The file names support case retention (which is
 not the same as case-sensitivity). References to SHELL file
 names can be made in any form of mixed case usage.

 P?S/8 SHELL file extensions are up to four characters
 expressed in the same character set as the file name.

The PALX (or XPAL) language will include upper/lower case support to
allow fully formed P?S/8 SHELL file names.

In the P?S/8 SHELL environment, the file names are packed into six
words containing the six-bit upper-case representation of the file
names; the case bits are stored separately for the name and the
extension.

As such, two additional directives will be required, tentatively
proposed as the CASENA{ME} and the CASEEX{TENSION} directives for the
file name and file extension portions respectively. The CASENA{ME}
directive will return a 12-bit value with the actual case of the
corresponding name characters obtained from the last usage of the
extended FILENA{ME} directive. The CASEEX{TENSION} directive will
return a four-bit value with the actual case of the corresponding
extension character obtained from the last usage of the extended
FILENA{ME} directive. Since trailing characters in both the name and
extension portions of an extended file name may not be present, the
case bits will only be set on actual lower-case characters in either
portion of the last FILENA{ME} directive usage. (The high-order eight
bits of the returned value of CASEEX{TENSION} will always be cleared.)

In a case-retentive system (such as the P?S/8 SHELL), the case of each
file name character is retained for optional use in printing
utilities; actual search functions are performed in a caseless manner.
Other than the length of compare strings, this is consistent with the
basic P?S/8 system and OS/8.

Note: To maintain complete compatibility with OS/8, a separate
FILNAM{E} directive may be used to support the SHELL file system
names; the FILENA{ME} directive will also be available as presently
defined.

Certain user-modified assemblers exist that support the TEXTZ
directive which forces the extra 12-bit word of 0000 even if the /J
command-line option switch (or equivalent) is in effect. Future
versions of P?S/8 PAL may support the TEXTZ directive and the SIXBTZ
directive (using the alternate six-bit text code).

Page 38 of 103

Note: As of PAL8 Version B0 (the last version released by DEC within
OS/278 Version 2), the TEXTZ directive is not supported.

Most PAL assemblers (including P?S/8 PAL and PAL8) support the "
operator in expressions. The result is the seven-bit ASCII code for
the next character with the mark parity bit set.

A proposed ASCII directive would take a string argument much like the
TEXT directive to create a string of seven-bit ASCII characters.
Setting the /J command-line option switch would prevent a trailing 12-
bit word of 0000.

An additional ASCIIZ directive could be implemented to force the
creation of the trailing 12-bit word of 0000 regardless of the setting
of the /J command-line option switch.

Note: An additional issue is whether to have an option to prevent the
mark parity bit within the text string as arithmetic operations are
not possible on individual string characters.

Even without any form of ASCII (or related) directive as stated above,
it is possible to create seven-bit ASCII text strings (with any of the
variations required) using the " operator. When used alone, each
character in the string will have the mark parity set; string
delimiter characters can be added if desired, such as ending the
string with a 12-bit word of 0000 or making the last character of the
string negative (as a 12-bit signed integer). For example, by adding
an additional term in each expression, it is possible to strip off the
mark parity bit as follows:

HLOWRLD,"H&177;"E&177;"L&177;"L&177;"O&177;" &177 /HELLO WORLD MESSAGE
 "W&177;"O&177;"R&177;"L&177;"D&177!4000 /NEGATIVE ENDS TEXT.

An unnamed additional text directive has been proposed to create
packed seven-bit ASCII text strings following the three for two
packing convention as used in OS/8 (and P?S/8 SHELL) text files.
Because of alignment restrictions, additional null eight-bit bytes
will be required, regardless of the issue regarding the mark parity
bit. If the string is meant to be an image of an actual file section,
there must also be a mechanism to append a trailing Control-Z
character into the string.

Note: The issue of a three for two directive will likely be taken up
in the PALX (or XPAL) assembler which will support upper-case/lower-
case text input files. A PARITY directive with appropriate argument
support can be implemented to handle all mark parity bit (and perhaps
the Control-Z character) issues raised above.

2.50 Additional command-line option switches and issues

/0 Automatically generate *200 after the use of the FIELD
 directive.

Page 39 of 103

 Note: Most programs have data or explicit origins after FIELD
 settings. By using an explicit origin setting, a known
 serious bug of one of the released DEC BIN loaders (known as
 the self-starting binary loader) can be avoided.

 The problem with this version of the DEC BIN loader (which was
 never fixed) is that when a FIELD setting is encountered, it
 is applied prematurely; the last data word from the previous
 address (presumably intended for use with the former field
 setting in effect) is erroneously loaded into the new field.
 By ensuring the last data word is an origin setting, this
 problem can be avoided.

 As a practical matter, most well-designed programs use
 specific origins after FIELD settings for appropriate
 purposes; as such, this option is generally irrelevant.

/Y The ! operator is changed from inclusive OR (.IOR.) to shift
 left six bits.

 Without the /Y command-line option switch set, 22!44 generates
 0066; with the /Y command-line option switch set, 22!44
 generates 2244.

 The ! operator (with the /Y command-line option switch set)
 can be used to create short six-bit text expressions:

 A= "A&77

 B= "B&77

 A!B

 Each word created using the ! operator in this manner produces
 the same result as a 12-bit component (two characters) of a
 text string.

 Note: It is not necessary to use the ! operator to create an
 equivalent result. The following syntax will create the
 identical value:

 A^100+B

 More complex text operations can produce similar results
 derived directly from the actual seven-bit character values:

 "A&77^100+"B-300

 By the use of these alternatives, the standard definition of
 the ! operator is available (and use of the /Y command-line
 option switch can be avoided).

Page 40 of 103

 Certain programs require the default ! operator when used to
 embellish combined OPR or IOT instructions:

 CLA!CLL!CML!RTL /SET THE ACCUMULATOR TO 0002.

 DTSF!DTRB /SKIP ON DECTAPE DONE OR ERROR FLAG
/SET; READ THE ERROR REGISTER.

 Programmer preference will determine whether to enable the
 /Y command-line option switch. As in the case of the /J
 command-line option switch, if the /Y command-line option
 switch needs to be set, this should be documented in the
 beginning of the source code to ensure proper assembly.

2.60 P?S/8 PAL directives

P?S/8 PAL is fully compatible with all standard directives (also known
as pseudo-operations sometimes abbreviated as pseudo-ops) as
implemented in PAL8. Certain additional directives are supported that
are compatible with other assemblers such as the LAP6-DIAL/DIAL-MS
embedded assembler or PAL10. Specific directives are unique to P?S/8
PAL. There are serious issues associated with the DTORG directive as
discussed below.

Note: A complete list of P?S/8 PAL directives is provided in Appendix
B below.

2.61 Issues regarding the DTORG directive

The OS/8 implementation of the DTORG directive is deliberately avoided
in P?S/8 PAL. A proposed solution to the underlying problem is
presented below which will allow the DTORG directive to be useful to
P?S/8 system generation in future releases of P?S/8 PAL.

2.62 PAL8 implementation of DTORG

As currently supported in PAL8, the DTORG directive is completely
compatible with PAL10. The DTORG directive is meant to create (128
words/block) absolute block references within the binary output to
allow a special-purpose loader (a component of the DEC Typeset-8 group
system programming software) to write Typeset-8 system blocks on
DECtape (and perhaps other devices).

The general function is to specify a numbered storage block on a
TC01/TC08/TU55/TU56 DECtape followed by the (up to) 128 words to be
written to the specified block.

The origin in memory is set prior to the DTORG directive; however, it
is generally ignored because no form of standard loader (such as the
DEC BIN paper-tape binary loader) is supported. The origin is used to
define the upper limit in memory of the (up to) 128 data words that
follow; once an entire PDP-8 page has been defined (placing the
current location counter on the next PDP-8 page), the intended block
contents are finalized.

Page 41 of 103

Typeset-8 programs create a series of small code sections as such.
Each is loaded by a special-purpose Typeset-8 generation utility which
writes the data to the specified DECtape (or other device) logical
block. However, there are important issues:

a) Each section written to a targeted DECtape block is taken
 from a lengthy punched binary paper-tape created at an OS/8
 development site; the tape invariably is the latest release
 of a major section of the Typeset operating system (or one
 of its utilities). In-house DEC Typeset-8 machines generally
 did not include high-speed readers; these systems invariably
 had Teletype Model 35 ASR terminals to read in the binary
 data.

b) There is no form of DEC BIN-compatible checksum protection
 associated with the written data. Since the binary paper-
 tapes are generally quite lengthy, this is patently foolhardy.

 By the nature of binary paper-tape, it is expected that
 reading in long paper-tapes will occasionally result in read
 errors. This is why the DEC BIN loader format includes the
 standard checksum protection frames.

 Note: The DEC RIM loader, which lacks a checksum mechanism, is
 only used to load short binary programs such as the BIN
 loader, which in turn can load in significant binary program
 data with the confidence provided by passing an overall
 checksum test. It is unreasonable to expect to use the RIM
 loader for lengthy binary files; the analogy between RIM
 binary paper-tape loading and Typeset-8 binary paper-tape
 loading is troubling.

c) Despite being created by PAL8 in OS/8 standard binary format
 (as a .BN file), the binary output violates the OS/8 binary
 file standard; the output of a program containing instances
 of the DTORG directive cannot be successfully loaded by OS/8
 ABSLDR. Attempts to read in the punched binary paper-tape
 will always end in a checksum error, even if an error-free
 read was performed. This is because the implementation of the
 DTORG directive usurps the underlying DEC BIN format that OS/8
 converts into three-for-two format OS/8 records (384 frames
 per logical record).

 As such, it is impossible to improve the performance of the
 Typeset-8 special-purpose loader; reading in the entire binary
 paper-tape will not yield valid checksum information that
 could be used to reject attempts to read the lengthy tapes

 that introduce additional flaws.

Page 42 of 103

 Note: It is thought that an alternate checksum scheme can be
 applied to the present incompatible binary format as described
 here. Compatible binary paper-tapes do not include FIELD
 setting data in the checksum while the first frame of the
 DTORG block argument sets the analogous bits. However, it is
 generally understood the Typeset-8 group never programmed for
 extended memory; it would appear that an alternate checksum
 scheme is impossible if both DTORG and FIELD statements appear
 in the same binary file. It is not known if the Typeset-8
 group programmers even included checksum tests; reading in
 long binary paper-tapes and expecting the event to be free of
 read errors represents a serious misunderstanding of the
 nature of the paper-tape media.

 This flawed position is likely based on the irrelevant fact
 that all products of the Typeset-8 group used premium quality
 BRPE (Burpee) paper-tape punches for six-level paper-tape
 support using TTS code (the standard of the industry as used
 by all Typeset-8 customers). It would be bad for their image
 to admit that other DEC products were simply not made to the
 same standards as was sold to the Typeset-8 customers.

 This in part explains the presence of the (over-built)
 Teletype Model 35 ASR terminals everywhere in the Typeset-8
 development labs which occasionally were subject to visits by
 various customer personnel. Visitors generally had only
 superficial understanding of the various hardware components
 but gained confidence in Typeset-8 by first impressions.

 Teletype Model 35 ASR terminals look quite rugged (but still
 may have read errors). The PC04 readers generally attached to
 many PDP-8 systems do not inspire the same level of visual
 confidence.

 This was also coupled with the false notion of claiming the
 dominant usage was for relatively small patches related to
 custom changes for the benefit of end-user systems.

 We will likely never know if any development time was wasted
 by the Typeset-8 group as a consequence of this poor choice of
 manual data transport, as Typeset-8 group labs were generally
 located far from either more general PDP-8 development areas
 or TOPS-10 time-sharing system terminals.

 More to the point, DEC management for all 12-bit systems never
 expected anything to be changed within the Typeset-8 group
 since, at the time, it was perceived as the only cost center
 producing a profit while the rest of the software development
 and related groups were unable to show any equivalent addition
 to the corporate bottom line.

Page 43 of 103

 Note: It is the author's opinion that much of what passed for
 productivity in the Typeset-8 group would more correctly be
 described as make-work (or goldbricking). (There is ample
 evidence of this obtained by examining the output of the OS/8
 PTP: handler when text files are processed; at the time, the
 only beneficial usage of this special handling was offline
 printing on the Teletype Model 35 ASR terminals.)

2.63 Proposed remedies to the DTORG problem

Apparently due to internal DEC politics, no attempt was made to remedy
this problem by educating the Typeset-8 programmers regarding their
naive design; various well-known mechanisms can easily solve the
problem as follows:

a) Instead of implementing the DTORG directive as a violation
 of the internal binary format of DEC BIN utilities and OS/8,
 the binary data can be patterned after a variety of utility
 formats such as certain details of P?S/8 non-system device
 handlers and all OS/8 device handlers (as required by OS/8
 BUILD).

 An arbitrary series of origin settings can be used to indicate
 the intention of DTORG directive statements as follows:

 DTORG 1234 /DESIGNATE BLOCK 1234 FOR OUTPUT.

 This DTORG mechanism would create the equivalent of the
 following binary output:

 PREV= . /NEED THE PREVIOUS ORIGIN SETTING.

 *7777;*7777;*1234;*PREV /OUTPUT FLAG ORIGINS FOLLOWED BY
/THE DTORG BLOCK NUMBER FOLLOWED
/BY THE PREVIOUS ORIGIN.

 A special-purpose loader is still required to create Typset-8
 system blocks in the proposed format; however, the binary data
 created is compatible with all loading mechanisms; a lengthy
 binary paper-tape punched out and then read on a Teletype
 Model 35 ASR read station could be known to have passed the
 standard checksum test. Afterwards, all designated blocks can
 be written out at once (assuming all block images can be
 simultaneously loaded into memory).

 Note: The Typeset-8 system runs on 4K machines. The binary
 paper-tape output created for a customized user configuration
 would tend to be somewhat longer than the binary paper-tape
 for FOCAL, 1969 (as an arbitrary but likely representative
 example of comparable size, nearly the entire user memory
 space of 00000-07577). It is entirely possible far longer
 tapes could be required depending on how much of the system
 was being updated at any one time.

Page 44 of 103

b) The example remedy represents an expedient method to solve the
 DTORG problem. More elaborate schemes could include
 additional origin settings, perhaps following the last two
 data-related origins as shown in the example. An overall
 mini-checksum for the entire string of origin settings could
 be created if desired. (The final origin must repeat the
 value in effect prior to the DTORG grouping to allow proper
 loading.)

 Regardless of specific implementation details, the entire
 problem of supporting incompatible binary files would be
 eliminated. All binary files can be used with all available
 binary format utilities. After punching the lengthy paper-
 tape, it could be read back using the high-speed paper-tape
 reader. The resulting file would not only have to pass the
 standard checksum test, but additionally could be directly
 compared to the original binary output file to completely
 confirm the validity of the paper-tape before bringing the
 tape to the Typeset-8 back-room facility (usually located in a
 remote building) for the purpose of generating Typeset-8
 system components.

c) Without having to support data in an incompatible binary
 format, the need to store paper-tape binary frames becomes
 superfluous. OS/8 could have easily been developed using a
 more efficient internal file format similar to P?S/8 and the
 R-L Monitor System which would essentially be a 256 word

 equivalent of Slurp binary loader format.

 It is well known to the author (and certain original DEC staff
 members), that DEC managers perverted certain aspects of the

 demo project that was eventually to become OS/8. Their
 demonstrable ignorance of PDP-8 operating systems has left its
 mark on various forms of internal poor design aspects of that
 system.

 It is surmised that Richard Lary intended to use 256 word
 Slurp binary loader format for OS/8 (having just recently
 demonstrated the R-L Monitor System to the same dim bulbs who
 rejected that pioneering system), but the edict to use images
 of binary paper-tape frames clearly was created in part due to
 ignorant (and arrogant) demands of the Typeset-8 group.

 Note: PAL10 also implements the creation of incompatible
 binary paper-tapes; the DTORG support in PAL10 is identical to
 that of PAL8 and actually was accomplished prior to the

 existence of OS/8. However, since PAL10 is a cross-assembler,
 this has no impact on any aspect of the TOPS10 operating
 system performance; in OS/8 this poor design decision causes a
 noticeable loss of performance every time binary files are
 loaded by any OS/8 user.

Page 45 of 103

d) OS/8 PIP could easily be modified to convert compatible binary
 files using DTORG directives (as proposed) into Typeset-8
 format binary paper-tapes (assuming lack of cooperation from
 the Typeset-8 group). Thus, the problems associated with
 incompatible binary format would only affect the developers of
 Typeset-8, and not the entire OS/8 community at large.

 While not likely to occur, the binary format of OS/8 utilities
 could be updated to 256 word Slurp binary loader format which
 would improve the performance of OS/8 for all users.

e) While the DTORG directive is not useful for OS/8 purposes
 (every aspect of the present DTORG implementation is
 responsible for some negative aspect of OS/8 performance),
 since it addresses 128 logical words/block storage (while OS/8
 addresses 256 word logical records), it can be useful for
 future implementation of P?S/8 system generation utilities.
 This would follow the overall flow of Typeset-8 system
 generation methods (without any of the flawed specifics).

 Future releases of P?S/8 PAL (and the SHELL assembler PALX or
 XPAL) will develop a more useful implementation of the DTORG
 directive; for the present, P?S/8 PAL merely implements
 DTORG as one of the nonfunctional directives supported for
 source-level compatibility reasons, but generates an
 incompatible subset of the proposed changes.

f) A P?S/8 utility, tentatively to be known as BINCON, may be
 written to read and convert present OS/8 binary files to the
 proposed format (with respect to the DTORG disposition); the
 resulting compatible binary format would then be stored as
 P?S/8 Slurp format binary files. This would implement binary
 compatibility with the proposed changes to DTORG as will be
 implemented in future releases of P?S/8 PAL. P?S/8 system
 generation utilities could then operate with binary paper
 tapes or other media developed on either operating system.

 Since it is intended that P?S/8 BINCON operate in a
 bi-directional manner (analogous to the OS8CON text conversion
 utility), OS/8 users can benefit from the advanced assembly
 features of P?S/8 PAL when loading (resulting) binary files in
 OS/8.

 Note: P?S/8 BIN can create binary paper tapes in DEC BIN
 format on the low-speed or high-speed punch; this can be
 accomplished by a chained assemble-and-punch operation as
 described in section 2.30 above.

 More information regarding P?S/8 Slurp binary file format is
 available in the document P?S/8 Binary File Internal
 Description available separately.

Page 46 of 103

2.70 Additional information

P?S/8 PAL supports all mathematical operations commonly available in
most PDP-8 assemblers (and several operations that are not available
in competing assembler programs) as follows:

a) Unary operations.

VALUE= 100 /SET VALUE TO 0100.

VALUE /THIS IS 0100.

+VALUE /THIS IS 0100.

-VALUE /THIS IS 7700.

b) expressions.

VAL1= 40 /SET FIRST VALUE TO 0040.

VAL2= 100 /SET SECOND VALUE TO 0100.

VAL1+1 /THIS IS 0041.

VAL2-1 /THIS IS 0077.

VAL1^4 /THIS IS 0200.

VAL2%4 /THIS IS 0020.

VAL1+VAL2 /THIS IS 0140.

VAL1-VAL2 /THIS IS 7740.

VAL2!-VAL1 /THIS IS 7740.

RDE; 7\VAL2 /THIS IS 0702 FOLLOWED BY 7100.

Notes:

1) While it is completely correct to use unary operations within
 compound expressions, cases such as the one shown above are
 known to fail when using OS/8 PAL8 due to misimplementation
 (contrary to OS/8 documentation). As such, it may be
 necessary to perform such operations in stages using
 intermediate equations when there is a requirement to maintain
 PAL8 compatibility.

2) Multiply is signified by using the ^ operator.

3) Divide is signified by using the % operator.

Page 47 of 103

4) When using the ! operator in expressions, the results are
 obtained by performing an inclusive .OR. operation on the
 elements given. If the /Y command-line option switch is set,
 the operation performed is changed to left-shift six bits.

5) The last example is used when programming LINCtape operations
 on a classic LINC or LINC-8 or PDP-12 system that supports the
 corresponding hardware. RDE is a two-word instruction to read
 a LINCtape block; the second word is a compound word
 containing the memory segment (quarter of a memory field) for
 the transfer in the high order three bits and the block number
 in the low-order nine bits. The RDE symbol is already present
 in P?S/8 PAL if dual-mode assembly is enabled by use of either
 the /8 or /9 command-line option switches.

6) The \ operator performs a left-shift nine bits on the supplied
 value. This is generally used to place the memory segment
 bits into the second word of a two-word LINCtape read or write
 instruction.

 P?S/8 PAL only supports the \ operator if dual-mode assembly
 is enabled by use of either the /8 or /9 command-line option
 switches.

The reader is directed to various documents available on the Internet
covering the fundamentals of PDP-8 programming and the PAL language as
implemented on various systems (not all of which are compatible with
DEC standards). P?S/8 PAL is generally a superset of all other
compatible implementations (to within nitpicks).

Additional information on the P?S/8 PAL assembler is available on the
Internet:

http://www.ibiblio.org/pub/academic/computer-science/history/pdp-
8/PQS8-related%20Files/1989%20Help%20Files/ASMBLR.HELP

A short summary of all supported command line option switches is
contained within this file along with other internal documentation of
P?S/8 PAL taken from the source code file (ASMBLR.PAL aka PQSASM.PAL).

2.80 Issues with regard to using FLIP.EXE to convert line conventions

Proper usage of the online copy of ASMBLR.HELP (and many other
documents) may require end-of-line conversion due to unix-based
conventions used on various servers.

All text files (including the aforementioned ASMBLR.HELP) located
within the archive referenced above can be converted to MS-DOS/Windows
conventions using Rahul Dhesi's well-known FLIP.EXE program.

FLIP can convert files between MS-DOS and unix conventions in both
conversion directions. Running the program without arguments from an
MS-DOS window will output the program options needed for a successful
conversion.

Page 48 of 103

FLIP.EXE is widely available as freeware; a copy of this program is
included in the P?S Enhanced PDP-8 Simulator (PEPS) package for
Microsoft Windows in the \PEPS\Folders\Utilities directory.

Note: Due to limitations of FLIP.EXE as distributed, it may be
necessary to use file names conforming to MS-DOS conventions; many
files associated with the PEPS project use naming conventions
compatible with the forthcoming P?S/8 SHELL directory structure.

The P?S/8 SHELL uses 12.4 file names with case retention while MS-DOS
uses 8.3 file names in upper-case only. OS/8 uses 6.2 file names in
upper-case only. Other than potential file date limitations (for
files created prior to 01-Jan-1980), SHELL directory files can easily
be stored in Windows directories. The files may be renamed to MS-DOS
conventions in Windows for further processing with FLIP.EXE, then
renamed back to the original file name as required.

Note: FLIP.EXE as distributed is not compatible with 64-bit Windows
systems. One remedy is to use Windows WordPadtm to process the files
(which must be accomplished one file at a time).

If the PEPS package is available, ASCII text files may be transferred
to either the LPT: or PTP: stream files and then have all potential
artifacts stripped out. While this can be a somewhat time-consuming
process, this utility will also perform the same operations as
FLIP.EXE.

Page 49 of 103

‾‾
Appendix A - P?S/8 PAL error messages

Code Meaning

BE Current page literal Buffer Exceeded. Only 63 current page
literals are allowed per page.

BO Binary output Overflow. Insufficient binary output files passed
to complete the assembly.

CO COnditional assembly syntax error or nested < or > count problem.

DT Duplicate Tag error. An attempt was made to modify an existing
symbol value using ,.

ER User generated ERror. The program includes internal logical
safeguards that were violated. See Note 1.

FI FIxmri error. An attempt was made to improperly define an MRI-
type symbol or redefine a permanent symbol.

IC Illegal Character error. Possibly [or (usage without enabling
literals.

IE Illegal Expression error. The latest statement is syntactically
malformed.

II Illegal Indirect error. The designated pointer is not located on
the current page or page zero.

IM Insufficient Memory to load the symbol table. This may be
remedied by using the /C command-line option switch.

IP Illegal Pseudo-op (directive) redefinition attempt. All
directives are permanent symbols and cannot be redefined.

IR Illegal Reference to an inaddressable memory location by a
direct reference instruction (instead of a pointer address).

LG Unsuppressed Link Generated error with link generation enabled.
The generated link will also be flagged.

NE Null Expression within a literal reference. The expression must
contain at least one term.

NU NUmerical data error. This is usually an attempt to use 8 or 9
when the prevailing radix is octal.

PA PAuse message. A programmed value associated with this message
is displayed. See Note 2.

PE Page Exceeded. The code on a current page overlaps the literal
table. The literal table (or program) must be made smaller.

Page 50 of 103

Appendix A (continued)

PH Conditional assembly PHase error. The assembly terminated with
an open failing conditional assembly statement.

PO Pushdown list Overflow. The latest expression is too complex.
Simplify the coding using a series of smaller steps.

ST Symbol Table exceeded. More memory is required (or use fewer
modular assembly options). This might be remedied using the /C
command-line option switch.

SY Miscellaneous SYntax error. The error doesn't fall into any
other reported categories.

UF Undefined Field error. The argument to a FIELD directive is
undefined.

UO Undefined Origin error. The argument to an origin setting
using * is undefined.

US Undefined Symbol error. A symbol was referenced that was not
defined during pass one of the assembly.

ZE Page Zero Exceeded. Page zero code overlaps the literal table.
The program or literal table must be made smaller.

Page 51 of 103

Appendix A Notes

1) Well-written programs include internal safeguards to prevent
scenarios that might violate obscure nuanced details of the
program, such as requiring a particular symbol to be maintained
within a narrow address range (or at a particular location in
memory). Analysis of the error message report may help a
maintenance programmer determine what programming blunder was
committed.

2) PAuse messages are not actually errors. Well-developed programs
occasionally include reports during the assembly for a variety of
purposes, including providing additional information about an
error condition signaled by the ERROR directive. Extremely long
source files may include use of the PAUSE directive to report
when an assembly pass starts (or completes).

Note: PAuse message output unrelated to errors should be avoided
during pass two; this is necessary to avoid unexpected disruption
of listing output. Techniques to determine which assembler pass
is in effect are described elsewhere in this document; these can
be utilized to prevent output past pass one.

End of Appendix A

Page 52 of 103

‾‾
Appendix B - P?S/8 PAL directives

ASMIFM{INUS} expression

The ASMIFM{INUS} directive is one of the conditional
assembly features of the extended PAL language. See Note 1.

The specified expression is evaluated. If the result is
negative, the next line is{E} assembled; if the result is
positive, the next line is ignored.

ASMIFM A-B /COMPARE A TO B.
D= 3 /SET D TO 0003.

The next line may be blank or consist of comments only
rendering the conditional moot. During the early
development of a program, this may deliberately be done to
force a specific outcome.

If additional statements are on the same line as the
ASMIFM{INUS} directive (using ; to separate the statements)
and the conditional test fails, the additional statements
are also ignored.

ASMIFN{ONZERO} expression

The ASMIFN{ONZERO} directive is one of the conditional
assembly features of the extended PAL language. See Note 1.

The specified expression is evaluated. If the result is
non-zero, the next line is assembled; if the result is
zero, the next line is ignored.

ASMIFN A-B /COMPARE A TO B.
D= 3 /SET D TO 0003.

The next line may be blank or consist of comments only
rendering the conditional moot. During the early
development of a program, this may deliberately be done to
force a specific outcome.

If additional statements are on the same line as the
ASMIFN{ONZERO} directive (using ; to separate the
statements) and the conditional test fails, the additional
statements are also ignored.

Page 53 of 103

Appendix B (continued)

ASMIFZ{ERO} expression

ASMIFZ{ERO} directive is one of the conditional assembly
features of the extended PAL language. See Note 1.

The specified expression is evaluated. If the result is
zero, the next line is assembled; if the result is
non-zero, the next line is ignored.

ASMIFZ A-B /COMPARE A TO B.
D= 3 /SET D TO 0003.

The next line may be blank or consist of comments only
rendering the conditional moot. During the early
development of a program, this may deliberately be done to
force a specific outcome.

Note: If additional statements are on the same line as the
ASMIFZ{ERO} directive (using ; to separate the statements)
and the conditional test fails, the additional statements
are also ignored.

ASMSKP expression

The ASMSKP directive is one of the conditional assembly
features of the extended PAL language. See Note 1.

The specified expression is evaluated as an unsigned 12-bit
integer value. The next expression-value lines of the
source code are ignored.

ASMSKP 3 /SKIP THE NEXT THREE LINES.
HLT /THIS IS IGNORED!
JMP .+3 /THIS IS ALSO IGNORED!
/ IGNORED AND ALSO A COMMENT!

If the expression evaluates to zero, all lines following the
ASMSKP directive will be assembled. If the expression
evaluates to a non-zero value and additional statements are
on the same line as the ASMSKP directive (using ; to
separate the statements), the additional statements are also
ignored.

The ASMSKP directive is needed because of the complex nature
 of conditional assembly using the available set of related
 directives (certain logical expressions might require the
 use of multiple conditionals). Unfortunately, since the
 ASMSKP directive does not work with any form of delimiter
 mechanism, the programmer must carefully count the lines
 required to be skipped; slight changes to the program source
 can cause unexpected results.

Page 54 of 103

Appendix B (continued)

CONSOL{E}

The front panel switches are read during the assembly.

The CONSOL{E} directive returns the contents of the front
panel switches to allow storage of the value into an
assembly-time symbol:

SWITS= CONSOLE /STORE CONSOLE SWITCHES IN SWITS.

Conditional assembly techniques can then be used on the
 resultant symbolic value for any purpose as determined by
 the programmer (such as causing PAUSE directive output to
 appear during the assembly).

DATE

The DATE directive returns the low-order 12-bits of the
current system date to allow storage of the value into an
assembly-time symbol:

CURDAY= DATE /STORE THE DATE IN CURDAY.

Conditional assembly can use the date for a variety of
purposes including creating a current version of the
program. As of P?S/8 Version 8Z, the format of the returned
expression matches that used by current P?S/8 System
programs (which requires periodic program maintenance,
albeit infrequently).

Future releases of P?S/8 PAL will likely include the DATEHI
directive to obtain the high-order six bits of the current
system date. The two values can be combined to form the
complete date (in the range of 01-Jan-1900 through
31-Dec-2411). The proposed format will require alternate
calculations but will be free of the need for maintenance.

More details regarding the specifics of calculating the
current system date can be found in the P?S/8 Keyboard
Monitor Command Guide available as a separate document.

DECIMA{L}

The internal radix for mathematical expressions is set to
decimal; the default radix is octal (which can be restored
by subsequent use of the OCTAL directive).

Page 55 of 103

Appendix B (continued)

DEVICE

The DEVICE directive takes a four-character string argument.
It is used to form the device-name string used to reference
P?S/8 non-system device handlers and all OS/8 device

 handlers as follows:

DEVICE DTA1 /REFERENCE TO DTA1:

The DEVICE directive creates two 12-bit words containing the
packed six-bit ASCII text values of the argument. In the
example given, the output would be equivalent to 0424 (DT)
followed by 0161 (A1).

The string argument is not processed in the same manner as
in the case of TEXT and related directives; as such, the /J
command-line option switch has no effect on DEVICE
directive usage.

DTORG expression

The DTORG directive is intended to provide target storage
device block number information when generating operating
system components for Typeset-8 as follows:

DTORG 60 /WRITE THIS PAGE TO BLOCK 0060.

The expression is evaluated as a 12-bit unsigned integer to
designate a block number on a device such as TC01/TC08
DECtape. Up to 128 words (assembled at the current location
counter) follow as the intended data to be written to the
target block. See Notes 1, 2 and 3.

The implementation of the DTORG directive is extremely
problematic. See sections 2.61, 2.62 and 2.63 of this
document for more information.

EJECT optional-string-value

The EJECT directive causes assembler listing output to
advance to the next page.

If used with the optional-string-value, the title on the
next page is set to the optional-string-value text (subject
to truncation).

All statements containing the EJECT directive are not
shown in the assembler listing output.

Page 56 of 103

Appendix B (continued)

ENBITS

The ENBITS directive is used in PAL10 to enable the bitmap
of the latest memory field when either a new FIELD
directive is used or the end of the assembly. This feature
is not implemented in other PAL assemblers; the ENBITS
directive is provided for source-code compatibility purposes
only. See Note 2.

ENDBIN

The ENDBIN directive closes the current binary file.
Additional binary output (if any) will be stored in the next
binary output file.

The ENDBIN directive is ignored if binary output
generation is disabled.

The ENDBIN directive can be used to create additional
(optional) program segments ancillary to a master binary
file(s) to be initially loaded separately. ENDBIN is
supported primarily for compatibility with the PAL III
paper-tape system assembler.

ENPUNC{H}

Binary output generation may have been turned off using the
NOPUNC{H} directive; the ENPUNC{H} directive will re-enable
binary output generation.

The NOPUNC{H} directive is often used when changing the
binary current location counter to a value different from
the (unrelocated) current location counter used during the
assembly. This is used to relocate a code section that
initially loads into one memory area to another memory area
(by unstated means); the initial loading area is the current
location counter defined prior to the use of the NOPUNC{H}
directive. The ENPUNC{H} directive is used to restore
binary output once the intended target current location
counter value is in effect.

The ENPUNC{H} directive is ignored if binary output is
already enabled. No error message will occur; this allows
ENPUNC{H} directive statements to be used to ensure binary
output has been restored.

 The ENPUNC{H} directive is ignored if binary output
generation is disabled. See Note 4.

Page 57 of 103

Appendix B (continued)

ERROR optional-numeric-expression

The ERROR directive causes a deliberate error (and error
message). If automatic chaining to P?S/8 BIN is in
effect (binary output files are being generated and the /G
command-line option switch is set), the chaining operation
will be prevented.

Well developed PDP-8 programs can contain safeguards to
prevent undesirable scenarios such as having a definition
fall out of a required narrow range of addresses (or in some
cases a unique required value). This may help prevent

 future program maintainers from committing logical blunders.

 The value of the optional-numeric-expression will be
displayed as part of the error message; this may help
pinpoint the programming problem such as in the example that
follows:

*7 /APPROPRIATE STARTING LOCATION.

 LOCTM1, .-. /TEMPORARY STORAGE.
 LOCTM2, .-. /ANOTHER TEMPORARY (WRONG PLACE!)

AUTOXR= . /THIS IS WRONG! SHOULD BE 0010.

MYPTR= AUTOXR+7 /USED AS AN AUTO-INDEX REGISTER.

IFNZRO MYPTR&7770-10 <ERROR MYPTR>

The value of MYPTR is 0020 instead of staying within the
required range of 0010 through 0017; as such, it is not
capable of being used as an auto-index register (as the
program logic demands). Hopefully, the error message
ER 0020 AT LOCTM2+0001 (0011) (where 0011 is the current
location counter at the point of error in this example), is
sufficient to aid maintenance programmers in correcting
the mistake. (The LOCTM2 location is inappropriately placed
in the auto-index register area ruining the program logic.
By moving LOCTM2 to another area of page-zero memory, the
problem is eliminated; program reassembly will not trigger
the error-detection safeguard.)

Use of the ERROR directive in this manner can be further
embellished if desired. See the description of the PAUSE
directive elsewhere in this document for further details.

If the optional-numeric-expression is not used, the error
message will be ER 0000.

Page 58 of 103

Appendix B (continued)

EXPUNG{E}

The EXPUNG{E} directive is used to clear the entire symbol
table at the start of an assembly.

All permanent symbols are removed (except directives). The
program must define all symbols used (including MRI symbols
using the FIXMRI directive).

 By deleting the internal symbol table, it is possible that
 certain programs may be capable of assembly on system
 configurations with smaller memory size.

As an example of proper usage of the EXPUNG{E} directive,
the source code of P?S/8 PAL performs an EXPUNG{E} at the
beginning of the assembly; as such, P?S/8 PAL fully defines
all symbols used within the program. This guarantees proper
program generation by any qualifying assembler program (that
properly supports all required features).

As of this writing, only recent implementations of P?S/8 PAL
and OS/8 PAL8 support all of the features required for
proper assembly of the P?S/8 PAL source code. It is hoped
that savvy TOPS-10 programmers can modernize PAL10 to add
the few missing features in the current implementation. (To
avoid consequential problems, many features of P?S/8 PAL are
not used in the P?S/8 PAL source code; where required, the
PQS directive is used to produce proper results should the
assembly be performed on an alternate assembler program.)

P?S/8 PAL supports many symbols not ordinarily found in
other assemblers (such as IOT instructions for several PDP-8
peripherals and the full PDP-8/E Extended Arithmetic Element
[EAE]).

Future releases of P?S/8 will include the optional SHELL
overlay; this will include an assembler (partially) based on
P?S/8 PAL to be known as PALX (or perhaps XPAL). Either
P?S/8-based assembler program will be capable of assembling
the source code of either program (although the SHELL-based
assembler will support additional features beyond the scope
of assembling the assembler).

Page 59 of 103

Appendix B (continued)

FIELD optional-numeric-expression

The FIELD directive is used to set a designated memory field
for binary loading of the statements that follow. If the
optional-numeric-expression is present, it is evaluated to
set the desired field; if there is no argument, the next
memory field past the present value is selected.

When a FIELD directive is used, all open literal pools are
output and reset to default values. If the /0 command-line

 option switch is set, an automatic *200 will also be
 generated overriding the previous value of the current
 location counter.

Memory fields up to a maximum of 256K are supported for
compatibility with the KT8A option (which supports

 addressing memory up to 128K); however, all standard binary
 loading utilities can only load binary data generated in
 the 32K address space (FIELD 0 through FIELD 7).

 Future releases of P?S/8 will include an extended binary
loader that will require the KT8A hardware to operate; due
to complexity, an extended binary loader will operate in a
manner analogous to the current virtual Slurp loader.

FILENA{ME}

The FILENA{ME} directive takes a string argument in the form
of an (up to) six-character file name and a (one or) two-
character (optional) file extension. This is used to create
a four word text string consisting of an OS/8 six-character
file name and a two-character file extension as follows:

FILENAME FOOBAR.PA /STATIC FILE NAME STRING.

The FILENA{ME} directive creates four 12-bit words
consisting of the packed six-bit ASCII text characters
derived from the string argument. In the example given, the
output would consist of 0617 (FO), 1702 (OB), 0122 (AR) and
2001 (PA).

P?S/8 PAL supports the FILENA{ME} directive for OS/8 PAL8
compatibility. Future P?S/8 systems will support the P?S/8
SHELL with an extended assembler based on P?S/8 PAL to be
designated PALX (or XPAL). PALX will support an option to
extend the FILENA{ME} directive to support SHELL directory
file names (which are more complex than OS/8 file names).

The string argument is not processed in the same manner as
in the case of TEXT and related directives; as such, the /J
command-line option switch has no effect on FILENA{ME}
directive usage.

Page 60 of 103

Appendix B (continued)

FIXMRI

The FIXMRI directive is used to augment a standard equate
statement to process the symbol definition as a Memory
Reference Instruction (MRI). MRI symbols modify the
expression evaluation so that the PDP-8 addressing rules are
applied instead of inclusive or (.IOR.) processing (which is
the default method of expression evaluation) as follows:

FIXMRI INC= 2000 /ISZ PRESUMED TO NEVER SKIP.

The FIXMRI directive is also used to define floating-point
pseudo-instructions that generally follow the MRI addressing
rules as part of several software floating-point packages.

When the EXPUNG{E} directive is used, FIXMRI is needed to
redefine all required MRI symbols (such as AND, TAD, ISZ,
DCA, JMS and JMP).

FIXTAB

The FIXTAB directive is used after all symbols meant to be
considered as an extension of the permanent symbol table are
(fully) defined.

All such initialization should occur at the start of the
assembly to establish the permanent symbol table (perhaps
after the use of the EXPUNG{E} directive).

All permanent symbols will not be included in the cross-
reference output (if the /X command-line option switch is in

 effect) or the symbol table printout at the end of the
 assembly (if the /S command-line option switch is in effect)
 unless the /A command-line option switch is (also) set.

I

The I directive is required in all PDP-8 MRI statements
using indirect references. This forces bit[3] to be set so
the generated instruction value to conforms to the PDP-8
addressing rules. This is done after the evaluated
expression is adjusted according to the MRI addressing rules
in effect.

Indirect statements using the I directive are subject to
errors caused by violation of the PDP-8 addressing rules.
See Note 5.

Page 61 of 103

Appendix B (continued)

IFDEF symbol <statements>

The IFDEF directive is one of the conditional assembly
features of the PAL language.

The symbol table is searched for the specified symbol. If
the symbol is present (and defined), the statements
contained within the < and > are assembled. If the symbol
is not present (or not defined) at this point in the
assembly, the statements contained within the < and > are
ignored.

Unlike ordinary symbolic references, attempts to access the
specified symbol while undefined (using the IFDEF directive)
will not cause Undefined Symbol errors.

The statements can span an indefinite number of lines of
source code as necessary. Conditionals are occasionally
used within other conditionals in a nested manner. The
count of < and > must be carefully maintained to achieve an
error-free assembly; the contents of comments are scanned
for < and > when conditional assembly is in effect.

The IFDEF directive is often used to include other symbols
(or data) into an assembly when relevant:

IFDEF TC01 < /IF TC01/TC08 DECTAPE.

NOPUNCH /NO BINARY OUTPUT FOR NOW.

*7754 /WHERE WC, CA ARE.

 WC, .-. /WORD COUNT.
 CA, .-. /CURRENT ADDRESS.

ENPUNCH /BINARY OUTPUT ON AGAIN.

> /END OF CONDITIONAL.

The controlling symbol TC01 should be defined in an earlier
section of the source file where all global symbols are
generally grouped together as follows:

 / GLOBAL SYMBOLS HERE.

TC01= 1 /USING TC01/TC08 DECTAPE.

Since the controlling symbol DECTAP{E} is defined, the
conditional section shown above will be assembled.

Page 62 of 103

Appendix B (continued)

IFNDEF symbol <statements>

 The IFNDEF directive is one of the conditional assembly
features of the PAL language.

The symbol table is searched for the specified symbol. If
the symbol is not present (or not defined), the statements
contained within the < and > are assembled. If the symbol
is present (and defined) at this point in the assembly, the
statements contained within the < and > are ignored.

Unlike ordinary symbolic references, attempts to access the
specified symbol while undefined (using the IFNDEF
directive) will not cause Undefined Symbol errors.

The statements can span an indefinite number of lines of
source code as necessary. Conditionals are occasionally
used within other conditionals in a nested manner. The
count of < and > must be carefully maintained to achieve an
error-free assembly; the contents of comments are scanned
for < and > when conditional assembly is in effect.

The IFNDEF directive can be used to initialize a default
symbolic value as follows:

IFNDEF NUDATA <

NUDATA= 1 > /GET NEW DATA.

In the example above, the conditional statement is assembled
during pass one of the assembly. During pass two the
statement is ignored because the symbol is already defined.

By defining a symbol in this manner, conditional control of
other statements located in other parts of the assembly may
be created. The example coding shown in the IFDEF directive
section above is typical of such statements.

When multiple possibilities exist, a more complex set of
statements can chose a desired default as follows:

IFNDEF DF32 <DF32= 0> /ASSUME DF32 NOT PRESENT.
IFNDEF RF08 <RF08= 0> /ASSUME RF08 NOT PRESENT.
IFNDEF TC01 <TC01= 0> /ASSUME TC01 NOT PRESENT.

IFZERO DF32+RF08+TC01 <TC01= 1> /USE TC01 BY DEFAULT.

A global definition near the beginning of the source file
can be used to override the (safety) default as used above.

More information on the IFZERO directive is available
elsewhere in this document.

Page 63 of 103

Appendix B (continued)

IFNZRO expression <statements>

 The IFNZRO directive is one of the conditional assembly
features of the PAL language.

The specified expression is evaluated. If the result is
non-zero, the statements contained within the < and > are
assembled. If the result is zero, the statements contained
within the < and > are ignored.

The statements can span an indefinite number of lines of
source code as necessary. Conditionals are occasionally
used within other conditionals in a nested manner. The
count of < and > characters must be carefully maintained to

 achieve an error-free assembly; the contents of comments are
 scanned for < and > when conditional assembly is in effect.

The IFNZRO directive is often used to check an assembly
parameter range as follows:

*7 /APPROPRIATE STARTING LOCATION.

 LOCTM1, .-. /TEMPORARY STORAGE.
 LOCTM2, .-. /ANOTHER TEMPORARY (WRONG PLACE!)

AUTOXR= . /THIS IS WRONG! SHOULD BE 0010.

MYPTR= AUTOXR+7 /USED AS AN AUTO-INDEX REGISTER.

IFNZRO MYPTR&7770-10 <ERROR MYPTR>

The value of MYPTR is 0020 instead of staying within the
required range of 0010 through 0017; as such, it is not
capable of being used as an auto-index register (as the
program logic demands). An error message will be issued
(during pass two) when this code section is assembled:

ER 0020 AT LOCTM2+0001 (0011)

Situations such as the example above often come about when
maintenance programmers do not completely understand the
design created by the original author(s). Proper safeguards
can be designed in to prevent program logic blunders.

Page 64 of 103

Appendix B (continued)

IFZERO expression <statements>

 The IFZERO directive is one of the conditional assembly
features of the PAL language.

The specified expression is evaluated. If the result is
zero, the statements contained within the < and > are
assembled. If the result is non-zero, the statements
contained within the < and > are ignored.

The statements can span an indefinite number of lines of
source code as necessary. Conditionals are occasionally
used within other conditionals in a nested manner. The
count of < and > must be carefully maintained to achieve an
error-free assembly; the contents of comments are scanned
for < and > when conditional assembly is in effect.

The IFZERO directive is often used to create assembler
default values:

IFZERO OURFLD <

BUFFER= 4000 /USE FIELD 0 VALUE.>

IFZERO OURFLD-1 <

BUFFER= 6000 /USE FIELD 1 VALUE.>

In the above example, a parameter must be set to a value
consistent with an overall assembly parameter that can have
multiple values.

LMODE

The LMODE directive is provided in the dual mode assembly
module to enable LINC mode addressing and certain symbols
unique to LINC mode. See Note 1.

NOBITS

The NOBITS directive is used in PAL10 to disable the
bitmap of the latest memory field when either a new FIELD
directive is used or the end of the assembly. This feature
is not implemented in any other PAL assembler; the NOBITS
directive is provided for compatibility purposes only. See
Note 2.

Page 65 of 103

Appendix B (continued)

NOPUNC{H}

The NOPUNC{H} directive turns off binary output generation
during the assembly without affecting the assembler's
current location counter. Using the ENPUNC{H} directive
later in the assembly will restore binary output.

The NOPUNC{H} directive is often used when changing the
binary current location counter to a value different from
the (unrelocated) current location counter used during the
assembly. This is used to relocate a code section that
initially loads into one memory area to another memory area
(by unstated means); the initial loading area is the current
location counter defined prior to the use of the NOPUNC{H}
directive. The ENPUNC{H} directive is used to restore
binary output once the intended target current location
counter value is in effect.

 The NOPUNC{H} directive is ignored if binary output
generation is not enabled in the overall assembly. See Note
4.

OCTAL

The internal radix for mathematical expressions is set to
octal. While the default radix is octal, an earlier section
of source code may have changed the radix to decimal using
the DECIMA{L} directive. Any source code section where the
current radix is uncertain should include a statement using
the OCTAL directive to restore the default radix.

PAGE optional-numeric-expression

The PAGE directive is used to set an origin setting at the
lowest location on a PDP-8 memory page for binary loading of
statements that follow. If the optional-numeric-expression
is present, it is evaluated to set the desired page; if
there is no argument, the next memory page is selected.

Selecting a new page will cause the output of the
literal table of the previous page in effect (if any).

The default origin of any assembly is 0200; this is
equivalent to using the PAGE 1 statement or a statement of
the form:

*200 /START AT 0200.

Changing the current page will force a dump of current page
literals (assuming literal generation is in effect).

Page 66 of 103

Appendix B (continued)

PAUSE optional-numeric-expression

The PAUSE directive has two different usages:

When used without the optional-numeric-expression, the PAUSE
directive indicates the rest of the latest input file will
be ignored. This usage of the PAUSE directive is provided
for compatibility with the paper-tape operating system PAL
III assembler.

When used with the optional-numeric-expression, a PAUSE
message is displayed during each pass of the assembly. This
is a user-defined function and is not an error message per
se (although the programmer can define values to specific
messages to describe some internal situation related to an

 error in an internal coding section).

 When developing extremely long programs, programmers
may use the PAUSE directive to signal the current program
section and/or the start (or end) of each assembly pass.
For more information see Section 2.03 of this document.

PMODE

The PMODE directive is provided in the dual mode assembly
module to enable PDP-8 mode addressing and certain symbols
unique to PDP-8 mode. See Note 1.

When P?S/8 PAL is operating in PDP-8 mode, there is
generally no difference between dual-mode assembly and the
normal single-mode assembly.

For compatibility with programs developed using the embedded
assembler utility of the LAP6-DIAL/DIAL-MS operating system,
certain additional directives are included when dual-mode
assembly is enabled in P?S/8 PAL.

This includes an alternate set of conditional assembly
directives that are not available in any other PAL
assembler.

PQS

The PQS directive is a feature unique P?S/8 PAL. It can
be used in conditional assembly statements to allow special-
purpose programming only supported by P?S/8 PAL; alternate
statements can attempt to provide compatibility with other
assemblers. Unfortunately, certain powerful features of
P?S/8 PAL are not available in other assemblers; crude
alternatives have been used to provide a functional (albeit
inferior) result where possible.

Page 67 of 103

Appendix B (continued)

Features of P?S/8 PAL such as conditional literals have been
instrumental in implementing several very large bootable

 application programs requiring both storage devices and 32K
 memory; conditional assembly has been used to provide
 inferior support of statically-determined page zero literals
 through the use of manual optimization at some point in the
 development. However, as additional development is
 performed, the static manual optimization tends to drift
 while assembly with P?S/8 is always current.

Only additional manual optimization can sync up the relevant

 (newer) changes. As such, the PQS directive has been
 extensively used to allow PAL8 to replicate the latest

static optimization until further development with P?S/8 PAL
can be performed.

The forthcoming P?S/8 SHELL will include a more advanced
assembler (partially) based on P?S/8 PAL tentatively to be
known as PALX (or perhaps XPAL). P?S/8 SHELL PALX will also
support the PQS directive; however, since XPAL will be a
more comprehensive assembler, a companion PQSX directive
will also be implemented. This will allow programmers to
take advantage of the advanced features of both P?S/8
assemblers.

RELOC optional-numeric-expression

The RELOC directive performs much of the functionality of
the NOPUNC{H} and ENPUNC{H} directives in a more compact and
elegant form. The optional-numeric-expression is evaluated
to form a relocation factor that sets up an offset between
the assembler's current location counter and the binary
output origin.

Note: Since the relocation factor is applied to all binary
output, the RELOC directive can be used in conjunction with
literals.

Additional usage of the RELOC directive with the
optional-numeric-expression causes cumulative relocation,
which can be useful in certain obscure situations. The
RELOC directive used without the optional-numeric-expression
resets the relocation factor to zero.

Note: While PAL8 is the only other assembler that supports
the RELOC directive, there are certain differences:

a) PAL8 flags statements detected as apparently relocated
 with *. P?S/8 PAL flags statements in a similar manner,
 but only if relocation is actually in effect.

Page 68 of 103

Appendix B (continued)

 If a statement of the form

 RELOC .

 is used in the source program, relocation is reset to
 zero; however, PAL8 will only cancel the statement
 relocation flag when the RELOC directive is used
 without the optional-numeric-expression.

b) PAL8 does not flag statements that are relocated by
 the use of the NOPUNC{H} and ENPUNC{H} directives.
 P?S/8 PAL outputs the * on all statements actually
 relocated regardless of method of relocation.

 Note: Certain advanced programming methods include the
 simultaneous usage of the NOPUNC{H} and ENPUNC{H}
 directives and the RELOC directive; this is necessary
 when there are several independent aspects of relocation
 in effect simultaneously.

SEGMNT optional-numeric-expression

The SEGMNT directive is used to set the field and origin
setting to the quarter memory field segment specified by the
optional-numeric-expression in the range of 00 (field 0,
location 0000) through 37 (field 7,location 6000) as
required by the LINC architecture of the LINC-8 and PDP-12.

If the optional-numeric-expression is present, it is
evaluated to set the desired segment; if there is no
argument, the next memory segment is selected.

Note: Segment 2 is the default value for LINC mode assembly
followed by an origin of 0020 (04020). This is equivalent
to SEGMNT 2 followed by *20 (in LINC mode, addresses are
specified within a segment). See Note 1.

SIXBIT text-string

The SIXBIT directive creates 12-bit words packed with six-
bit characters taken from the text-string (other than
delimiter characters). The encoding is six-bit ASCII text
as used with similar directives in assemblers for DEC 18-bit
and 36-bit systems (which is not the PDP-8 standard).

Note: If the number of characters in the text-string is
even, an additional 12-bit word of 0000 is created as a
delimiter unless the /J command-line option switch is set.

 For more information see Section 2.41 of this document.

Page 69 of 103

Appendix B (continued)

SKIP optional-numeric-expression

The SKIP directive is used to create deliberately blank
lines in the listing output of an assembly. The
optional-numeric-expression is evaluated as an unsigned
12-bit integer. Blank lines are created as many times as
necessary unless the value is zero, in which case no blank
lines are created. If the optional-numeric-expression is
not present, one blank line will be created.

Note: All lines containing the SKIP directive will not be
displayed in the listing.

TEXT text-string

The TEXT directive creates 12-bit words packed with six-
bit characters taken from the text-string (other than
delimiter characters). The encoding is six-bit ASCII text
as typically used on the PDP-8 (which is not compatible with
similar directives in assemblers for DEC 18-bit and 36-bit
systems).

Note: If the number of characters in the text-string is
even, an additional 12-bit word of 0000 is created as a
delimiter unless the /J command-line option switch is set.

 For more information see Section 2.41 of this document.

TITLE text-string

The TITLE directive is used to set the title field of the
page header used on every listing page if the /L and /N
command-line option switches are set. The text-string will

 be used (subject to truncation) starting with the next
 printed page.

Normally, the title field is taken from the first line of
the first input file; the TITLE directive can only affect
subsequent output. However, the TITLE directive can be used
to override the first page title field by using the XLIST
directive beforehand:

/ EXAMPLE WHERE THIS IS NOT USED IN THE TITLE FIELD.

XLIST /TURN OFF LISTING NOW.

TITLE MY TITLE /USE DESIRED TITLE INSTEAD.

XLIST /TURN LISTING ON NOW.

Page 70 of 103

Appendix B (continued)

 By use of the TITLE directive, the title field on the
 listing page headers do not have to start with a "/"
 character (which all comments must have). All default
 titles come from the first line of the file; a typical
 statement would generally be a poor choice for a title
 field.

XLIST optional-numeric-expression

The XLIST directive is used to hide portions of a listing
file (assuming the /L command-line option switch is set).

 If the optional-numeric-expression evaluates to a non-zero
 value, the listing is turned off. If it evaluates to zero,
 the listing output is restored. If no argument is given,
 the listing output state is reversed from its former state.

Note: All lines containing the XLIST directive are hidden.

Z

The Z directive is provided for compatibility with the PAL
II assembler of the paper-tape operating system. All PDP-8
assemblers starting with PAL III are capable of properly
setting arguments (or operands) to MRI class instructions

 according to the rules of the PDP-8 architecture. PAL II
 only implements a subset where all symbols are erroneously
 placed on the current page. When necessary, the Z directive
 is used on all statements that actually address Page Zero to
 remove the current page bit from the generated value.

Note: PAL III was originally written in PAL II. Later
releases of the source code were modified to require a
binary copy of PAL III to assemble its own source code.

It is known that PAL8 ignores the Z directive while P?S/8
PAL implements the original intention.

ZBLOCK numeric-expression

The ZBLOCK directive is used to create blocks of data set to
0000. The numeric-expression is evaluated as an unsigned
integer; the value determines how many words are generated.

Note: If the numeric-expression evaluates to zero, no words
are generated.

Page 71 of 103

Appendix B Notes

1) Certain directives are only available if LINC mode dual assembly
is enabled using either the /8 or /9 command-line option
switches. They are provided primarily for compatibility with the
DIAL-MS dual mode assembler. Due to the nature of LINC mode
expressions that use one's complement arithmetic, the programmer
must be aware of the attendant quirks (such as positive and
negative zero values).

2) Despite not being particularly associated with dual mode
assembly, certain directives are provided only if either the /8
or /9 command-line option switches are set. These directives
will be moved to the general symbol table load in a future
release to avoid this erroneous dependency; for the present, dual
mode assembly must be enabled. Additional directives not
currently supported may be added to a future release of P?S/8
PAL.

3) The DTORG directive should not be used at this time as its
presence in the source code causes the binary output to be
corrupted. See Sections 2.61, 2.62 and 2.63 of this document for
more information.

4) The NOPUNC{H} and ENPUNC{H} directives are often used to relocate
binary output as part of an overlay structure. The assembler
current location counter can be updated while the binary output
origin remains fixed. The program segment loads into an address
space that can be moved or stored elsewhere while properly
assembled for its ultimate execution address space:

*6000 /WHERE THE GENERATED CODE LOADS.

NOPUNCH /FOOL THE ASSEMBLER.

*7600 /WHERE THE CODE EXECUTES.

ENPUNCH /UN-FOOL THE ASSEMBLER.

Note: The NOPUNC{H} and ENPUNC{H} directives are traditional
features of several PDP-8 assemblers including PAL10; literals
cannot be used with this form of relocation mechanism.

The RELOC directive can accomplish a similar form of code
relocation including literals if necessary. However, it is only
supported by P?S/8 PAL and PAL8.

5) The I directive changes meaning if LINC mode assembly is in
effect. Since there are no indirect references in LINC
programming, the I directive is redefined to force bit[7] on. In
the context of LINC addressing, the I directive means either
immediate mode (when used with instructions where the operand
immediately follows the instruction) or auto-indexed mode (when
used with references to locations 0001-0017).

Page 72 of 103

Appendix B Notes (continued)

Many LINC instructions take immediate arguments:

LMODE /LINC MODE ASSEMBLY.

LDA I; 3000 /LOAD THE AC WITH 3000.
ADA ; FOO /ADD THE CONTENTS OF FOO

The first instruction above uses the I bit to indicate the
argument (3000) is immediately after the instruction. The second
instruction does not use the I bit; as such, the address of the
operand follows (which ironically means it is an indirect
reference to the operand).

The PDP-8 references to locations 0010-0017 are auto-incremented
when referenced indirectly. In LINC mode, references to 0001-
0017 are ordinary indirect references unless the I directive is
used:

LMODE /LINC MODE ASSEMBLY.

ADA 17 /ADD WHAT IS POINTED TO.
ADA I 17 /ADD NEXT VALUE AS WELL.

The first instruction uses the present contents of 0017 to point
to the operand. The second instruction first increments the
contents of 0017 to point to the (next) operand.

Certain LINC instructions have special meaning for references to
location 0000; these instructions have specific addressing needs
which do not involve the I bit. The auto-increment references to
locations 0001-0017 clearly are the inspiration for the PDP-8
auto-increment usage of locations 0010-0017. The range was
shortened to allow the PDP-8 interrupt handling vector at the
lower addresses. (The LINC was designed with a primitive
interrupt structure; the LINC-8 does not support LINC
interrupts.)

The PDP-12 defines LINC mode interrupts analogous to the PDP-8
interrupt system (directed to an alternate vector location).

The PDP-8 cannot use indirect references to 0010-0017 without
auto-increment; to this limited extent, the LINC instruction set
is superior to the PDP-8 instruction set. LINC mode addressing
does not allow indirect usage of any other locations (other than
pointer locations immediately after the instructions). There is
no concept of a page zero in the LINC architecture, and there are
only three instructions that address all of memory directly.
However, all of memory in this case is limited to 1024 locations,
not the PDP-8 norm of 4096 locations.

Page 73 of 103

Appendix B Notes (continued)

There is no concept of a subroutine call mechanism in the LINC
architecture; the JMP instruction attempts to act as a stand-in.
However, if additional JMP instructions are used within the
subroutine, various fixups (read kludges) are required to protect
the return address.

All features considered, system architecture experts are welcome
to weigh in with their own opinions as to the relative worth of
PDP-8 versus LINC architecture; their views may greatly differ
from the author's viewpoint.

Few operating systems for the LINC architecture support PDP-8
programming; all known implementations are quite inferior to the
various PDP-8 assemblers mentioned elsewhere in this document.
To the author's knowledge, none of these systems support mixed
dual mode assembly to any extent; rather, PDP-8 programming and
binary loading support is considered an independent concept.

 This is especially disappointing for use on the PDP-12 where
mixed dual mode assembly is quite common due to the nature of the
architecture.

End of Appendix B

Page 74 of 103

‾‾
Appendix C - P?S/8 PAL conditional literals and related topics

P?S/8 PAL supports an extension beyond the literal features
common to other assemblers as described earlier in this document,
which is known as the conditional literal.

Note: An alternative term for the conditional literal is the
dependent literal since the actual code generated is dependent
upon specific conditions in effect throughout the assembly.

 While the use of conditional literals is an important and
powerful feature of practical PDP-8 assembly language
programming, conditional literal support is unique to P?S/8 PAL.

 Note: Future directions of P?S/8 support include the P?S/8 SHELL
overlay which will include a new assembler program partially
based on P?S/8 PAL; conditional literal support will be
consistent with P?S/8 PAL.

Alternate syntax considerations of conditional literals.

To aid in transitioning from other assemblers (such as Macro-11)
to PDP-8 programming, the conditional literal uses syntax similar
to that of certain other assemblers:

TAD #10 /ADD 0010 FROM SOMEWHERE.

While addressing rules for the PDP-8 differ from other computer
architectures, literals expressed this way are a familiar concept
to many programmers accustomed to the software environment of
these other systems; the use of conditional literals in P?S/8 PAL
will help programmers make the transition to the PDP-8 assembly
language environment easier. See Note 1.

Conditional literal syntax and addressing rules.

Conditional literals take the form of the following:

TAD #3 /ADD 0003 FROM CHOSEN PAGE.

In this example, the assembler will make a dynamic decision as to
which type of literal to use as follows:

a) If the program already contains a matching Page Zero literal
 due to other program statements using the identical value,
 this statement will use that existing Page Zero literal
 address.

b) Assuming a) fails, If the program already contains a matching
 current page literal value due to other program statements,
 the statement will use that current page literal address.

Page 75 of 103

Appendix C (continued)

c) Assuming both a) and b) fail, the assembler will create a new
 current page literal; the new literal address is used.

Note: It is conceivable current page literal statements on the
same page could benefit by using the same literal address should
the current page literal statement occur later in the assembly.

Unlike Page Zero and current page literals, there is no matching
optional trailing character. As such, the seldom-needed feature
of nested expression elements is not available when using
conditional literals. See Note 1.

In certain cases, it may be necessary to calculate factors of an
overall equation to be used with some form of literal statement.
Each such factor would be carried out by an equate statement
leading to the final expression used in the literal statement.
In the case of conditional literals this is unavoidable due to
lack of a closing expression character. See Notes 2 and 3.

Source libraries and conditional literals.

Experienced programmers tend to create a series of commonly used
routines as starting points for a new programming project.
Unlike other architectures (some constrained by ROM-based basic
routines), the PDP-8 imposes no particular structure, other than
a general convention that the last page of field 0 (07600-07777)
is reserved for whatever mechanism is used to load the program.

Note: Depending on the particular operating system and certain
specific configuration considerations, there may be additional
limitations imposed; however, the emphasis is always on minimal
intrusion regarding memory reservation. P?S/8 contains specific
information within the kernel memory in 07600-07777 to allow a
conforming program to determine what (if any) additional
limitations are in effect; other operating systems may implement
additional constraints on memory usage.

P?S/8 adds basic read/write routines to designated storage
device(s) that are available by the nature of P?S/8 internal
design. By proper adherence to system guidelines, programs can
be made compatible with all supported machine models including
the DECmate series (which is substantially incompatible with all
previous 12-bit DEC computers).

As stated above, by conforming to P?S/8 system guidelines, any
program can run under P?S/8 on any supported model; however,
there is no hard and fast rule that this is required. Any
program can be written for any specific supported model(s)
constrained only by the designated hardware (and the minimal
memory reservation rules of P?S/8, which must be observed to
allow P?S/8 to load the executable form of the program into
memory).

Page 76 of 103

Appendix C (continued)

For practical program execution, foundational programming is
needed to support many of the specific structures mentioned
above; many elements of this support will be needed nearly all
the time while others might be needed less often. In the general
case, it is advantageous to develop working modules that can be
organized into source libraries for each class of functions
desired. See Note 4.

Well-formed source library routines for use in the P?S/8
environment should exclusively use conditional literals wherever
possible; existing Page Zero literals defined in the main
program will be used to determine the specific binary code
generated. As such, the code size of the library routines will
tend to be shorter without expending the effort to determine this
manually (as would be the case when using other assemblers
lacking this feature unique to P?S/8 PAL). See Note 5.

Problematic interaction with incompatible assemblers regarding
conditional literals.

Attempts to maintain compatibility with other assemblers can be
frustrating when a programming project requires the conditional
literal feature to avoid excessive development time. Using P?S/8
PAL (and conditional literals), a nearly finished project can
produce a contemporaneous assembly listing which can then be
studied to determine instances that were successfully assembled
using existing Page Zero literals. This is a good starting point
to create compatible source code. However, any further changes
to the source code can easily invalidate the inter-symbol
relationships that led to the optimization that existed only
before making further source code modifications.

Any work performed at this point leads only to a tenuous form of
compatibility; changes in the coding may not translate into an
efficient program, just merely a program that had been efficient
at the time the necessary compatibility statements were written.
The result is hardly a good outcome, but is the only way to
achieve some measure of compatibility at the expense of efficient
design, achieved with minimal effort to this point, then modified
with additional effort that only partially supports the tentative
compatibility once further changes are made.

Implementation of compatible coding.

Conditional assembly techniques can be used to determine which
assembler is processing the source code and choose alternate
source code statements where necessary. While this tedious
process produces the same binary at the time the effort is spent
determining which statements to code both for P?S/8 PAL and also
other assemblers (such as PAL8), the alternate statements cannot
dynamically adjust to the changing requirements of an ongoing
project when future modifications are made.

Page 77 of 103

Appendix C (continued)

This is not by any means a completely viable alternative and
should only be implemented very close to the end of any project.
Those responsible for program maintenance need to be aware of
potential consequences of future coding changes.

Note: This is (in part) why certain programmers familiar with
P?S/8 PAL abandon PAL8 for some portion of their work.

The following example illustrates how to write code that
assembles in a custom manner with P?S/8 PAL:

IFNDEF PQS <PQS= 0> /THIS IS IGNORED BY P?S/8 PAL.

IFZERO PQS < /ASSEMBLE FOR THE OTHERS.>

IFNZRO PQS < /ASSEMBLE FOR P?S/8 PAL ONLY.>

Various techniques can be implemented for each instance of a
known successful conditional literal; the goal is to produce
binary code that is identical regardless of which assembler is
used (unless and until the overall source code optimization is
updated). The following serves as a minimal guideline for
constructing compatible dual statement sections:

IFNZRO PQS < /ASSEMBLE FOR P?S/8 PAL ONLY.

 AND #77 /JUST SIX BITS.

>

 IFZERO PQS < /ASSEMBLE FOR THE OTHERS.

 AND [77] /JUST SIX BITS.

>

All statements similar to the above, where the conditional
literal successfully used a Page Zero literal value, must be
coded as shown in the example.

Additional techniques, such as surrounding the conditionalized
code with judiciously chosen XLIST directive statements can
achieve what appears to be unaffected code if desired:

XLIST OFF /GENERALLY DON'T WANT TO SEE THIS.

IFNDEF OFF <OFF= 1> /THIS TURNS LISTING OFF.

IFNDEF ON <ON= 0> /THIS TURNS LISTING ON.

XLIST ON /WHAT FOLLOWS WILL BE SEEN.

Page 78 of 103

Appendix C (continued)

These parameters are used to debug the conditional sections. If
unexpected output occurs, the definition of OFF can be
temporarily changed to reveal all conditional sections (at the
expense of paging of the code in a listing file) to aid in
determining what was miscoded.

Note: The definitions of the controlling variables (OFF and ON)
are unimportant during pass 1 of the assembly as long as they are
eventually defined before the end of the source code.

All dual-coded sections should start with XLIST OFF. Each
section starts with an XLIST ON and ends with XLIST OFF.
Following the entire conditional section, XLIST ON should be
used.

Note: All statement lines with an instance of XLIST are not
listed. However, P?S/8 PAL (and PAL10) assembly listings will
reveal gaps in the statement numbers. Listings created with PAL8
and CREF have incremental line numbers since there is no ability
to detect the consequences of XLIST statements.

The example below implements all of the compatibility features
discussed above:

 XLIST OFF /START OF CONDITIONAL SECTION.

 IFNZRO PQS <

 XLIST ON
 AND #77 /JUST SIX BITS.
 XLIST OFF >

 IFZERO PQS <

 XLIST ON
 AND [77] /JUST SIX BITS.
 XLIST OFF >

 XLIST ON /END OF THIS CONDITIONAL SECTION.

Note: Every aspect of this technique must be repeated for each
instance of a conditional literal statement successfully using a
Page Zero literal value. When assembled by PAL8/CREF the code
appears to be innocuous; however, the actual program logic and
effort to implement the code is completely hidden.

More advanced techniques.

If the programmer chooses to spend additional effort regarding
these issues, statements can be formed to trace conditional
literal statements that succeed in producing Page Zero usage.

Page 79 of 103

Appendix C (continued)

 The following statement is to be used only once early in the
source code before any conditional literal considerations:

ZCNT= 0 /INITIALIZE SUCCESS COUNT.

Within each conditional section being traced, additional
statements are added just after the code statement using the
conditional literal as follows:

 IFNZRO TRC < /ASSEMBLED IF THE TRACE IS ENABLED.

 ZUSED= #77 /WILL BE ADDRESS THAT WAS USED.

 IFZERO ZUSED&200 <

 ZCNT= ZCNT+1 /COUNT THIS AS A SUCCESS.

 PAUSE ZCNT /OUTPUT CURRENT COUNT.

 PAUSE . /SHOW WHERE WE ARE

 >

 > /END OF TRACE FOR THIS SECTION.

This additional coding is intended for all conditional literal
statements without regard to the likelihood of Page Zero literal
value outcome. The tracing statements are designed to reveal the
statements that succeeded; this allows monitoring the
effectiveness of conditional literal usage.

The PAUSE directive used with an evaluated argument is a feature
exclusive to P?S/8 PAL. Each usage of the PAUSE directive
outputs a message to the prevailing listing output device; the
printout includes the four digit octal evaluation of the
arithmetic expression following the PAUSE directive as well as
the current address within the assembly. As used in the example,
the count of successful instances appears to grow with each new
successful case; the address within the assembly will aid in
adding the compatibility code changes required as shown above.

Note: PAUSE directive output is not an error message.

Real-world application example.

A large programming project that was materially affected by the
use of conditional literals is shown below. Statements were
added for backward compatibility (with PAL8) as described above:

A large PDP-8/E system was created for a corporate setting to run
several online systems (and an offline backup system that could
share data).

Page 80 of 103

Appendix C (continued)

This project is one of the most ambitious programs ever written
for the 32K PDP-8 environment. It was written as a standalone
bootable operating system with external system generation or
creation routines; the storage consisted of a pair of RK05 drives
on an RK8E with optional third-party serial-line multiplexors.
This system is capable of running as many as 40 tasks in a
cooperative multitasking environment.

Due to the sheer complexity (which includes overlays of certain
maintenance and data recovery tools) this was perhaps the best
known example of productivity improvement achieved by the use
of conditional literals. Had the feature not been available,
development time would have profoundly increased.

However, an unfortunate postscript to this otherwise successful
example includes the following:

The small company division that contracted for this system was
also occasionally managed by individuals from the parent company.
These individuals were not only totally unfamiliar with the local
division operation, but also totally ignorant of all things
PDP-8. As a direct result of their so-called "executive"
actions, the company paid for many additional weeks of needless
make-work to implement PAL8 compatibility as described earlier.

 They were warned at the time that future modifications would
likely result in increased development costs and time. This is
exactly what happened during the course of several years as the
requirements gradually changed. All of the necessary conditional
sections were consistently implemented as described above; the
cost predictably increased due to the additional effort to
reconcile the code as the project gradually changed direction.

Since the entirety of this large application is completely
standalone by nature, such decisions were quite foolhardy.

It is interesting to note the parent company was eventually
forced to sell the local division to another large company, and
in fact, eventually was forced into bankruptcy. The new owners
had notions of their own which did not include the use of any
DEC products; they decided to dismantle the equipment and then
specified a replacement system that would cost several million
dollars. However, since they also seriously devalued the entire
local company operation, they were forced to sell it to an even
larger company that eventually replaced everything with specific
overpriced PC compatible systems that could have easily been
produced for far less overall cost.

Page 81 of 103

Appendix C (continued)

As of the writing of this document, the corporate world perceives
this operation as requiring tens of millions of dollars worth of
hardware despite company growth of less than 20% in the over
twenty years of operation the author of this document is familiar
with; this era ended with the head of the local operation seeking
early retirement due to all of the incompetent interference over
the years.

Alternative methods to achieve some measure of compatibility.

The use of conditional literals is a useful technique for many
PDP-8 programming projects. If there is a need to produce a
result that can be used in OS/8, there are appropriate techniques
available to allow P?S/8 PAL to be used for program development.

a) P?S/8 generally runs on any configuration that OS/8 can
 support (including configurations OS/8 cannot run on due to

 its design limitations regarding system device handler
 design).

b) P?S/8 OS8CON is a bidirectional text file conversion program
 designed to facilitate moving PAL (and other language) source
 files between the two systems (in either direction of
 conversion). While each configuration is different, it is
 generally possible to create a compatible transfer mechanism
 on most (if not all) of the devices supported by both systems.

 With minimal effort, it is possible to maintain files in OS/8
 and also transfer copies of the files to P?S/8 to allow
 processing with P?S/8 PAL.

c) Depending on project complexity, there are currently several
 provisional methods to transfer assembled binary code between
 P?S/8 and OS/8. This involves taking advantage of fortuitous
 coincidences between the two systems with regard to field 0
 usage coupled with the fact that P?S/8 can boot to OS/8 while
 preserving the contents of extended memory across the reboot
 process.

d) For reasons unrelated to OS/8 binary compatibility as
 discussed within this document, a near-term future component
 of P?S/8 is being developed known as BINCON. BINCON will be
 capable of converting OS/8 absolute binary files to/from P?S/8
 Slurp format binary files. This will allow P?S/8 source
 development to not only continue to be written conforming to
 the subset of PAL8 compatibility (where feasible), but will
 also allow a misimplemented feature of PAL8 (DTORG which was
 originally implemented for the benefit of the Typeset-8 group,
 which corrupts the binary output for all other OS/8-related
 purposes) to become useful for P?S/8 development in the near
 future.

Page 82 of 103

Appendix C (continued)

 Certain P?S/8 source programs are intended to be assembled and
 loaded in the OS/8 environment; this produces a stand-alone
 system generation technique for a portion of current P?S/8
 system development. BINCON will allow changes to this process
 while also maintaining compatibility with the current method.
 P?S/8 PAL will produce proper P?S/8 binary files which can
 then be converted to OS/8 format. Programmers can use
 analogous techniques to take advantage of conditional
 literals (and perhaps other features such as dual-mode
 assembly), yet maintain source files (and converted binary
 files) in OS/8.

e) P?S/8 and OS/8 can be run from the P?S Enhanced PDP-8
 Simulator (PEPS) package for Windows (which is available from
 the author of this document). Due to the way the package
 is designed, it is possible to punch binary output in DEC BIN
 format within one system and then read it back into the other
 system, etc.

 As such, P?S/8 PAL can create an assemble-and-punch operation
 using a single command with the appropriate command-line
 option switches to produce binary output to the high-speed
 punch. Exiting the simulator back to the Windows command
 level, the high-speed punch data file can be reassigned as the
 high-speed reader data. The simulator can then be run booting
 OS/8. OS/8 PIP can be used to create an image binary copy of
 the high-speed reader input using the PTR: handler.

Page 83 of 103

Appendix C Notes

1) The syntax of the conditional literal was proposed as introduced
by the \ character. As of P?S/8 PAL Version 8P, the # character
is used. A cosmetic advantage of the original proposal was to
allow pseudo-symmetrical statements to be formed:

TAD \3/ /ADD 0003 FROM DYNAMICALLY CHOSEN PAGE.

No actual symmetry exists; in the example above, the line ends
with a comment starting just after the end of the conditional
literal with the first / character; to the casual eye, the
comment starts with the second / character (in the usual place
further to the right).

This syntax was abandoned when dual-mode assembly was added to
P?S/8 PAL. LINC mode code requires the \ character be used for
left-shift 9 operations associated with LINCtape programming.

2) PAL8 has several bugs in its arithmetic expression handling
that render it incompatible with P?S/8 PAL and PAL10, which
largely implement most expression features compatibly; however,
the weaknesses of PAL8 are avoidable for most (but not all) PDP-8
programming projects.

Note: Areas of weakness and incompatibility are the focus of this
section; the goal is to guide all users by providing useful
workarounds that can be deployed in all relevant operating
systems.

In general, P?S/8 program development features maintain
compatibility with the PAL8 implementation as released with
OS/278 Version 2. Certain bugs exist in earlier versions of
PAL8 which were never fixed; however, these are generally
esoteric in nature and for the most part easily avoided. In a
few specific instances, the exact syntax in statements within
P?S/8 source code files was slightly compromised to maintain
compatibility with PAL8; however, this is admittedly a relatively
minor issue. As described above, both PAL10 and PAL8 lack
conditional literal support, which is a key conceptual feature
that is crucial to realistic large-scale program development.

A large PDP-8 project was written attempting to overcome this
serious issue using conditional assembly techniques to manage
the incompatibility (with no ability to fully overcome the
problem). During development, many assembly listings were
analyzed to edit conditional assembly statements to best serve
the project. Since the project managers demanded that PAL8 be
used, this was a less than satisfying outcome wasting much time
and effort.

Note: In hindsight, the programmers should have fought management
more aggressively to prove their decisions were detrimental to
the company's bottom line.

Page 84 of 103

Appendix C Notes (continued)

3) The use of parenthetical expressions in the context of literals
is an intended design goal. Unfortunately, PAL8 parenthetical
expression support is poorly implemented and has many unexpected
limitations and odd quirks. It is generally recommended that
such expressions be avoided unless the only assemblers used are
PAL10 or P?S/8 PAL; both of these assemblers properly implement
Page Zero and current page literals regardless of complexity.

By design and where applicable, conditional literals must be
calculated using separate equate statements; however, the use of
parenthetical expressions is an obscure feature of the PAL
language which is seldom employed. Unfortunately, this led to
failure to test poor implementations such as PAL8. With regard
to arithmetic expressions in general, PAL8 has several blunders
besides literal expressions, such as a flawed implementation of
unary expressions.

Note: When few programmers use obscure features, bugs tend to go
unnoticed and are less likely to be fixed.

4) Due to the versatility of the PDP-8 instruction set (especially
the JMS instruction) there are often multiple ways to create
callable subroutines that, while similar in function, are not
identical in form or usage. At the whim of the programmer,
preferred variations can be placed into a source library, each
with different tradeoffs; as a project is developed, choices are
made as to which routines are best to use.

For example, a subroutine may be defined for the purpose of
passing a text string meant to be displayed on the system
console. Every aspect of the mechanism of the subroutine is
subject to change. A subroutine entry point may be located near
the end of Page Zero intended to be addressed directly by each
caller using JMS 0177 or similar. Alternatively, a pointer may
be placed on Page Zero to allow callers scattered throughout
memory equal access to the subroutine; multiple callers on
several memory pages would justify the use of a Page Zero
pointer. By using conditional literals, a proper dynamic
decision can be made with regard to appropriate generation of
subroutine linkage pointers.

An implementation detail might specify the use of information
passed in the accumulator, such as an upper limit on message
print length (in case the message could exceed some restricted
amount). Alternately, the accumulator could contain flag bits
indicating what action to take afterwards (such as displaying
<CR> and <LF>). Other possibilities could include the
disposition of specially crafted text message strings capable of
mixed upper-case and lower-case display.

Page 85 of 103

Appendix C Notes (continued)

The calling sequence could dictate the string exists inline past
the subroutine call; the subroutine should return to just past
the word containing the string terminator character.

Alternatively, the address of the string could be passed inline
and the subroutine returns to the location following the inline
pointer. If the scope of the subroutine includes extended
memory support, additional bits may be passed in a variety of
ways to form a full 15-bit address of where the string is located
within the potential 32K memory space.

Not every variation is needed in every situation and all
decisions are subject to preference. As such, source libraries
are not only highly specific to a programmer's needs, there are
many ways to carry out common functions and a sophisticated
programmer may expend effort developing elegant mechanisms to
exploit in future projects.

Note: Some features may inherently be somewhat inefficient of
memory utilization in exchange for functionality; experienced
programmers know what is the most suitable for any given
situation. With experience, additional projects may mandate
additional methods to expand programming techniques.

5) Note: Assuming several uses of a common value within library
sections, as long as one usage anywhere in the program is
"hardwired" as a Page Zero literal, all related instances will
also effectively become Page Zero literals. In some cases, it
may be desirable to include comments about likely combinations
within the relevant library routines.

 For example, two independent library routines may both use a
common literal value; if only one routine is referenced in the
main program, the use of actual Page Zero literal references
would depend on the usage of a hardwired Page Zero literal in the
main code. If both sections are included in the program,
changing any usage to a hardwired Page Zero literal would
ensure all other instances would become Page Zero references
without regard for the main program code. Conditional assembly
techniques can be applied to elegantly manage situations of this
nature.

Assume subroutine #1 contains the first (potentially Page Zero)
conditional literal while subroutine #2 contains a second
occurrence of the same (potentially Page Zero) conditional
literal.

The programmer could create a mechanism to account for
subroutines used in the library such as the following:

Page 86 of 103

Appendix C Notes (continued)

 SUB1= 1 /SUBROUTINE #1 IS USED IN THIS PROGRAM.

 SUB2= 1 /SUBROUTINE #2 IS USED IN THIS PROGRAM.

The body of code in the library for subroutine #1 would be
bracketed within the following statements.

 IFNZRO SUB1 <

 / THIS IS WHERE THE ACTUAL SUBROUTINE #1 CODE GOES.

 >

Similarly for subroutine #2:

 IFNZRO SUB2 <

 / THIS IS WHERE THE ACTUAL SUBROUTINE #2 CODE GOES.

 >

For the actual conditional literal section in question,
management statements similar to the following can implement the
example described above:

(This is the section where the potential Page Zero conditional
literal is located within subroutine #1.)

 IFZERO SUB2 <

 AND #77 /REMOVE UPPER SIX BITS.

 >

 IFNZRO SUB2 <

 AND [77] /REMOVE UPPER SIX BITS.

 >

The second subroutine uses the conditional literal form of a
similar statement; the actual binary code generated within
subroutine #2 is a Page Zero literal if a) the main program uses
the same Page Zero literal, or b) subroutine #1 uses the explicit
Page Zero reference because it was aware of the identical usage
within subroutine 2.

Page 87 of 103

Appendix C Notes (continued)

Future releases of P?S/8 PAL may make mechanisms such as this
slightly easier to implement. There exists an obscure assembler
for PDP-8 code including literal support and support for the
instructions of the FPP-12 (and FPP-8/A, E). It was designed and
implemented by Jack Burness for use with DIAL-MS (the operating
system he wrote exclusively for the 8K PDP-12 with one of a small
class of specific disk storage devices).

This assembler is known as FPPASM and differs from the embedded
DIAL assembler in the following particulars:

a) The DIAL assembler supports LINC mode assembly, FPPASM does
 not. (P?S/8 PAL supports LINC mode assembly as a modular
 option which can be enabled by the use of command-line option
 switches.)

b) The DIAL assembler does not support literals of any form
 while FPPASM supports Page Zero and current page literals in a
 manner generally compatible with PAL10, PAL8 and P?S/8 PAL.

c) The DIAL-MS assembler and the FPPASM assembler support certain
 directives and conditional assembly mechanisms incompatible
 with PAL10, PAL8 and P?S/8 PAL (when dual assembly mode is
 disabled). All of the directives unrelated to conditional
 assembly represent alternative syntax for the functionality
 supported by the three assemblers as stated above; in some
 cases, these features are less powerful and represent older
 language elements generally abandoned in favor of the newer
 directives. Any program can become fully compatible among the
 three assemblers by incorporating appropriate substitutions.

P?S/8 PAL supports most of the FPPASM conditional directives if
the proper command-line switches are used.

Additional directives available in FPPASM may be implemented in
future releases of P?S/8 PAL which are helpful when supporting
source code libraries.

The exact syntax of these directives will be made more compliant
with the other standard PDP-8 assembler directives; other
directives used within FPPASM have already been added to P?S/8
PAL for full compatibility with the DIAL assembler.

The IFREF directive assembles code contained within angle
brackets in a manner consistent with the IFNDEF, IFDEF, IFNZERO
and IFZERO directives. The determinant is whether or not a
stated symbol exists in the symbol table.

The IFNREF directive assembles code contained within angle
brackets if the stated symbol does not exist in the symbol table.

Page 88 of 103

Appendix C Notes (continued)

While the equivalent management logic can be implemented using
the IFNDEF and IFNZRO directives (for most source library
statements), the IFREF and IFNREF directives can simplify the
implementation of source code library support, especially if the
various code sections make use of conditional literals.

Called subroutines are included in the overall program because
they are referenced in the main source code section. Properly
utilized, source library maintenance can be an automatic process.
Library routines can make use of the XLIST directive to prevent
inclusion of unreferenced sections in the assembly listing.

Note: FPPASM was primarily written to support source libraries
for the FPP-12 hardware as part of the original FPP-12 software
package support for DIAL-MS. Some of the actual library files
are available on certain online software archive sites. See
below for the site maintained by the author of this document.
Source code of both the FPPASM assembler and various FPP-12
support libraries can be found at the following web site:

 http://www.ibiblio.org/pub/academic/computer-science/history
 /pdp8/FPPASM%20Files/

End of Appendix C

Page 89 of 103

‾‾
Appendix D - P?S/8 PAL command-line option switch ordered summary

/A If a symbol table or cross-reference is in effect, all symbols
will be used.

/B If explicit output files are not specified, the first binary
output file is % on the system device unit. See the description
of the /D and /U command-line option switches.

/C Enable internal reconfiguration of P?S/8 PAL resources to favor
symbol table capability over performance.

/D If explicit output files are not specified, the second binary
output file is $ on the system device unit. See the description
of the /B and /U command-line option switches.

/E Do not retain literal extents when leaving the current page.

Note: This command-line option switch is ignored unless some
combination of the /Q and /O command-line option switches are in
effect.

/F If P?S/8 PAL chains to P?S/8 BIN for the purpose of punching
binary paper-tape output, the output device is the high-speed
punch. See the description of the /R command-line option switch.

/G Chain to P?S/8 BIN for the purpose of either loading the binary
files created during the assembly or punching binary paper-tapes
from the binary files (if the /W command-line option switch is
also set).

Note: Chaining to P?S/8 BIN is inhibited if there were errors
detected during the assembly.

/H If chaining to P?S/8 BIN and the /W command-line option switch is
not set, all user memory is preloaded with 7402 (the PDP-8 HLT
instruction) prior to binary file loading. See the description
of the /G command-line option switch.

/I If chaining to P?S/8 BIN and the /W command-line option switch is
not set and using a hardware-dependent Slurp format binary
loader, the system device handler will be reloaded after all
binary files are loaded.

Note: This command-line option switch is ignored on systems that
only support the virtual Slurp format binary loader.

/J Prevent generation of a 12-bit word containing 0000 after text
strings with an even count of characters as used with the TEXT
and SIXBIT directives.

Page 90 of 103

Appendix D (continued)

/K Enable the change of title on assembly listing from every input
file. By default, only the first input file supplies the title
field for the entire listing.

Note: This assumes listing output is enabled. If there is
neither binary file generation nor listing enabled, force a two-
pass assembly.

/L Assembly listing output is produced during pass two of the
assembly process. See the description of the /N, /P and /X
command-line option switches.

/M Chain to P?S/8 MAP to create a bitmap of all binary output
generated during the assembly.

Note: When chaining to P?S/8 MAP then P?S/8 BIN, the chain to
P?S/8 BIN will be inhibited if there were errors detected during
the assembly; however, the chain to P?S/8 MAP will always be
performed.

/N Enable neatness (niceties) options of an assembly listing. Page
headers are added including the current date, day of the week and
page sequence numbers. See the description of the /T option
switch.

/O Enable link generation. Links will be flagged as assembly errors
unless the /Q command-line option switch is also set.

/P Enable wide-carriage listing output; where applicable, the output
will be oriented towards 11" x 17" ledger/tabloid format. See
the description of the /L and /S command-line option switches.

/Q Enable generation of Page Zero, current page and conditional
literals. Link generation is disabled. See the description of
the /O command-line option switch.

/R If P?S/8 PAL chains to P?S/8 BIN for the purpose of punching
binary paper-tape output, the tape is punched in enhanced RIM
format; this is readable by both the RIM loader and the BIN
loader. See the description of the /F command-line option
switch.

/S Symbol table output will be created at the end of the assembly.
See the description of the /A, /K, /N and /P switches.

/T Listing output is forced to the system console. If the /N option
switch is set, tear-off lines will be printed on every page.

/U If explicit output files are not specified and the /B or /D
command-line option switches are in effect, the logical unit used
is the system device logical unit number .XOR. 1.

Page 91 of 103

Appendix D (continued)

/V If chaining to P?S/8 BIN and the /W command-line option switch is
not set, the virtual Slurp format binary loader will be used to
load Slurp format binary files.

Note: Using the /V command-line option switch causes the /I
command-line option switch to be moot. The virtual Slurp format
binary loader is used by default on certain system
configurations.

/W Chain to P?S/8 BIN to punch binary paper-tapes from the binary
output files. See the description of the /F and /R switches.

Note: Chaining to BIN is inhibited if there were errors detected
during the assembly.

/X Enable cross-reference listing output of user symbols. Listing
output width is increased to accommodate statement numbers. See
the description of the /A, /N and /P command-line option
switches.

/Y The ! operator is changed from inclusive OR (.OR) to shift left
six bits.

/Z If chaining to P?S/8 BIN and the /W command-line option switch is
not set, all user memory is preloaded with 0000 (the LINC HLT
instruction) prior to binary file loading. See the description
of the /G command-line option switch.

/0 Automatically generate *200 after use of the FIELD directive. By
default, only the field change is generated.

/1 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 1. See the description of the =xxxx parameter below.

/2 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 2. See the description of the =xxxx parameter below.

/3 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 3. See the description of the =xxxx parameter below.

/4 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 4. See the description of the =xxxx parameter below.

/5 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 5. See the description of the =xxxx parameter below.

Page 92 of 103

Appendix D (continued)

/6 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 6. See the description of the =xxxx parameter below.

/7 If P?S/8 PAL chains to P?S/8 BIN for the purpose of loading the
binary output created by the assembly, the program will start in
field 7. See the description of the =xxxx parameter below.

/8 Enable LINC and PDP-8 dual assembly; the default operating mode
is PDP-8 mode (PMODE). The default assembly address is 0200.

/9 Enable LINC and PDP-8 dual assembly; the default operating mode
is LINC mode (LMODE). The default assembly address is 4020.

= If the =xxxx parameter is explicitly given on the command-line,
the program will be started at location xxxx in field 0 (unless
one of the extended memory command-line option switches /1
through /7 described above are set, in which case the starting
field is set to the corresponding field).

Note: The program will not be loaded (or started) if there were
errors detected during the assembly.

End of Appendix D

Page 93 of 103

‾‾
Glossary of Terms

 1. BIN format

The standard binary loading format in the DEC Paper-tape
 operating system is known as DEC BIN format which is optimized

for loading data from paper-tape frames. This format includes
both leader and trailer frame codes to delineate sets of data.
The highest tape channel is used as a visual aid to help position
paper-tapes in the reader; all leader and trailer frames have
only the high-order bit punched. Data frames may or may not have
this bit punched, but clearly have some combination of the other
bits also punched. All leader frames are ignored. Loading
ends when the first trailer frame is encountered. DEC BIN format
incorporates all necessary elements needed to load 12-bit
words into memory including a 12-bit checksum at the end of the
tape; memory field change frames are included as required.

Note: field change frames have the two highest bits punched.
Additionally, field change frames are not included in the overall
tape checksum. It is surmised this came about because the format
was upgraded when machines larger than 4K memory were first
produced, this could have had compatibility issues with DEC BIN
format tapes produced somewhat earlier.

DEC BIN format is inherently compromised in terms of loading
efficiency because of the need to support leader and checksum
codes that are superfluous in an operating system environment
(such as P?S/8). Storage devices inherently have device parity
checking for all data; leader and trailer frame codes serve no
purpose when data is stored in blocks on a mass storage device.

While certain systems use an adaptation of DEC BIN format for
binary files, P?S/8 uses the more versatile and efficient Slurp
binary loading format described elsewhere; Slurp format is
optimized for efficient loading. The P?S/8 binary utility
program (also known as BIN) includes utilities to convert between
paper-tape data and binary file data (in both conversion
directions).

Note: Throughout this document, BIN refers to the P?S/8 BIN
utility as mentioned above. More information about P?S/8 BIN can
be obtained from other documents such as the P?S/8 System
Programs Guide available separately.

Page 94 of 103

Glossary of Terms (continued)

 2. Edit buffer

P?S/8 includes a set of embedded commands in the keyboard monitor
which allow editing of a text file directly (without loading a
separate editing program). This design concept allows for rapid
editing of portions of a larger project that generally extends
across several TFS files. A file can be created from scratch or
an existing file can be loaded into the edit buffer within the
keyboard monitor. Files are tentative until the edit buffer
contents are saved to a named file in the TFS directory of the
system device (or one of the other supported logical device
units).

While there are some tradeoffs when compared to more traditional
file editing methods, generally there is only incidental need for
additional storage space; most files are updated in the edit
buffer and then written back to the same file slot on the system
device. Certain users also create backup copies of important
files to ensure the preservation of the file under edit, but this
practice is not mandatory.

Note: All files of a project may be saved to an alternate logical
unit with the same (or variant) file names. Backing up project
files (periodically) in this manner generally makes the creation
of individual backup files moot. Many users do not bother with
any form of file backup.

 3. Extended-length text files

Extended-length files partially resemble TFS text files except no
line number or line pointer data exists within the file.
Additionally, there are no length restrictions on extended-length
files (other than the applicable limits of the storage device).

 4. Logical Console Overlay

The Logical Console Overlay is an optional component of P?S/8.
When enabled, all conforming programs will direct all system
console (and lineprinter) input/output to subroutine calls to
designated memory locations instead of the usual physical
devices. While the use of the Logical Console Overlay requires
the availability of extended memory, certain advanced features
become available as described below:

a) If the P?S/8 system device handler detects an error, the usual
 action is to halt the CPU (often displaying device-dependent
 status bits in the accumulator); pressing CONTINUE on the
 system front panel will safely retry the latest read/write
 operation. Users need to be familiar with the particular
 system device handler in use to gain insight as to what is
 causing the specific problem by examining the contents of the
 accumulator (if feasible).

Page 95 of 103

Glossary of Terms (continued)

 Note: A system option is available to disable the system halt,
 resulting in an infinite retry after any error; depending on
 hardware particulars, this setting is generally not
 recommended. (Ironically, using this setting causes error
 handling to resemble the mediocre error recovery techniques
 usually implemented in many OS/8 device handlers.)

 When the Logical Console Overlay is enabled, the default
 action taken by the system device handler is transformed into
 issuing a status report on the system console device (which is
 potentially redefined by the Logical Console Overlay
 configuration to be directed to alternative hardware). This
 generally includes details of the latest read/write attempt.
 The user can choose which action to take (at the point of
 error) by entering one of the options appearing on the system
 console keyboard. This allows the user to correct the
 problem (if possible) and retry the latest read/write
 operation, or to abort the latest operation (if necessary).
 Even without having specific knowledge regarding the vagaries
 of the current system device, any user can easily manage all
 system device handler recovery operations (perhaps after
 consulting some device-specific documentation).

b) Not every system device handler is capable of optimal
 performance; this is especially true of system device handlers

 designed to run on 4K systems (without requiring loading of a
 portion of the handler into extended memory). Due to the

 limited memory space on 4K systems, it is often necessary to
 compromise performance to obtain basic functionality.

 When the Logical Console Overlay is enabled, additional
 functionality (designed into the system device handler for

 this purpose) is also enabled. This generally implements
 additional performance improvements that should overcome the
 original design compromises needed to obtain basic
 functionality.

 Note: On hardware configurations where the system device
 handler requires an extended-memory segment, the Logical
 Console Overlay is designed to load into lower memory
 locations within the same (highest) memory field. As such,
 for conforming programs (such as P?S/8 PAL) attempting to
 locate extended memory fields, the presence of the Logical
 Console Overlay does not change the count of fully available
 memory fields. In certain circumstances, programs may take
 advantage of the 3/4 memory field available if the Logical
 Console Overlay is disabled. For example, P?S/8 PAL may
 support up to 768 additional symbols if this memory space is
 available.

Page 96 of 103

Glossary of Terms (continued)

c) Certain configurations of the Logical Console Overlay may use
 alternate console hardware (such as a console terminal with
 interface device codes differing from 03/04). In certain
 configurations (based on terminal emulators), an error panel
 screen may temporarily replace the normal display of console
 output until the error is resolved.

 5. RIM format

While BIN format (as described elsewhere in this document) is the
standard format for loading most binary paper-tape programs, RIM
format is generally used to first load the BIN loader. While RIM
format is more inefficient, this is generally not an issue when
loading relatively short programs.

Some users want a minimal overall solution to loading certain
particular programs; as such, the binary data might be punched
in RIM format, eliminating the need for the BIN loader as an
intermediate loading program.

RIM format paper-tapes use the same overall frame layout as that
used with the BIN loader; the differences are as follows:

a) Auto-update of the memory loading pointer is not supported.
 Each loaded word must include an origin setting preceding the
 data word.

b) There is no support for an overall checksum in a RIM binary
 paper tape.

 Note: There are various techniques available to include an
 optional checksum at the end of a RIM format binary paper
 tape; this adds the ability for the BIN loader to load the
 same program as an alternative to the RIM loader.

c) No support for Field settings. The user must set the loading
 field from the front panel Data Field switches or equivalent
 means; this setting applies throughout the entire RIM loading
 session.

d) Two equally short versions of the DEC standard RIM loader
 exist. One supports the high-speed reader; the other supports

 the low-speed reader of the model ASR 33 (or ASR 35) Teletype
 often used as the system console device. All versions of the
 BIN loader are far longer programs; either of the RIM loader
 variants can be used to quickly load the BIN loader; as such,
 the RIM loader is often hand-toggled into memory using the
 computer's front panel switches.

Page 97 of 103

Glossary of Terms (continued)

 6. Slurp binary file format and Slurp binary file loader

Slurp is the name given to the P?S/8 binary file format by its
inventor, Richard Lary. (The name is suggestive of the mechanism
by which the loader functions.) Mr. Lary and his colleague Lenny
Elekman are the principal authors of the R-L Monitor System.
P?S/8 is (partially) based on this earlier system. Both
operating systems support Slurp format binary files as created by
P?S/8 PAL and other utilities; due to implementation restrictions
within the R-L Monitor System, there is no support for extended
memory loading.

Note: The assembler used in the R-L Monitor System is the DEC
Paper-Tape Operating System assembler known as PAL III. Certain
modifications were made to write binary output to the system
device in Slurp binary format. Although binary output is limited
to designated system blocks, additional commands exist to
transfer the binary output to user-designated Slurp format binary
files in the TFS directory (when and where feasible, which is not
always the case due to fixed file length considerations). P?S/8
PAL supports Slurp format binary output files directly, which
eliminates this problem; the default binary output design was
remedied as follows:

a) The block layout of the R-L Monitor System is such that Slurp
 format binary output is always written starting at absolute
 block 0022. There is a fixed file that can be generally
 referenced (as if it were in the TFS directory) located at
 blocks 0040-0057; in all command scenarios, this is accessed
 using the $ symbol. If sufficiently long Slurp binary output
 is created, it can easily overlap the storage space of the $
 file; as long as the length is less than 0020 blocks (meaning
 that no more than blocks 0040-0041 have been overwritten
 within the $ file), the Slurp format binary data can be
 transferred to a named file in the TFS directory. However,
 some programs create larger Slurp format binary data (which
 had been allowed to be as long as blocks 0022 through 0057
 without damage to the operating system). Such programs had
 to be reassembled and then loaded from the default Slurp
 binary area should there had been any activity that might
 change these specific circumstances (such as writing over the
 $ file).

 Due to an implementation restriction of the R-L Monitor BIN
 utility, it is impossible to load the contents of the actual $
 file; the syntax used to access it instead refers to the Slurp
 format binary output area starting in block 0022. (The BIN
 program reinterprets the starting block of the first input
 file as 0022 if the actual passed value is 0040.)

Page 98 of 103

Glossary of Terms (continued)

 Note: R-L Monitor system program names are limited to two
 characters, thus R-L Monitor RU{n} commands typically
 reference PA{L} and BI{N}, etc. Additional characters are
 allowed on the command line, but will be ignored.

b) P?S/8 changes certain aspects of the operating system block
 layout such that blocks 0020-0037 can be referenced with the
 symbol % which is analogous to the $ file (which references
 blocks 0040-0057) in all relevant command contexts.

 The storage blocks occupied by the two files (% and $) are
 also accessed as the virtual image of field 0 once created by
 the GET command (or equivalent). In this context, direct
 usage of the two file names should be avoided to prevent
 destruction of the core image; however, the image contents can
 be saved (and restored at a later time if desired) by using a
 series of keyboard monitor FE{tch} and WR{ite} commands as
 required. If there is no requirement to preserve the core
 image, the two files can be used independently in lieu of TFS
 files (which are generally faster to access due to close
 proximity to the beginning of the storage device).

 Note: while the P?S/8 SHELL overlay will (generally) not
 reference the TFS file structure, the field 0 virtual area is
 identically defined as the same blocks used in the basic P?S/8
 system. This can be useful when changing between the basic
 P?S/8 and the P?S/8 SHELL for further program development and
 related logistic issues.

 P?S/8 PAL includes the /B, /D and /U command-line option
 switches to access these files without having to provide
 explicit output file references (where applicable).

 Thus, any reference to the % file (whether explicitly as a
 stated output file, or by use of the /B command-line option
 switch passed to PAL) is the closest equivalent to the
 original functionality in the R-L Monitor System (without the
 potential file destruction problem).

 Note: The basic P?S/8 execution-class commands access system
 programs with up to six character names. For programs with
 exactly six characters in the name, the commands can be
 embellished using additional characters of the user's choosing
 (all of which are ignored). As such, this is not an issue for
 relevant programs as discussed here including PAL, BIN, GET,
 START, ODT (since all of them have shorter program names).

Page 99 of 103

Glossary of Terms (continued)

The fastest loading of binary data into randomly accessed memory
locations is achieved using the Slurp binary format method.
Actual loading efficiency approaches 6/7 of block-oriented (core-
image) binary format while allowing the loading of arbitrary data
ranging from individual memory locations through large blocks of
contiguous memory without requiring any form of block structure.
Memory can be freely loaded anywhere in the entire PDP-8 32K
memory space (other than system reserved memory areas).

Note: All implementations of the Slurp loader prior to P?S/8 were
limited to loading into field 0 only; P?S/8 uses an extension to
the format that doesn't impact on 4K usage. An appropriate
CDF XX instruction to the new memory loading field is required
when the loading field changes.

Since the P?S/8 Slurp binary file loader is a superset of the
original 4K-only versions as used is several other PDP-8 systems,
files transferred from the R-L Monitor System can be loaded
without internal conversion.

Since P?S/8 PAL supports chaining to P?S/8 BIN, all loading
options of the Slurp binary file loader are available during a
chain operation; additional details are described elsewhere in
this document.

A list of other operating systems that support a Slurp format
binary loader follows:

a) The R-L Monitor System (also known as MS/8 as submitted to
 DECUS). This is the earliest system to support a Slurp format
 binary loader, albeit limited to 4K loading. This system did
 not provide a virtual Slurp format binary loader option and is
 only implemented on TC01/TC08 DECtape for a single drive unit.
 Most notably, MS/8 was not a commercial product, as it was
 entirely written by students of the Polytechnic Institute of
 Brooklyn (now a division of New York University). Most of
 these students eventually became employees of Digital
 Equipment Corporation (DEC); however, all work on the R-L
 Monitor System was performed by students in the New York City
 area (including the author of this document who added support
 for FOCAL, 1969 just before the submission as DECUS 8-466).

b) While DEC was totally unaware of this situation, DIBOL-8 (the
 precursor of COS-300/310) was actually a hacked-up variant of
 the R-L Monitor System; binary output of the DIBOL compiler
 (and the DIBOL run-time system) are loaded by the original
 R-L Monitor System Slurp format binary loader. The keyboard
 monitor commands were modified to be consistent with the
 proposed COS systems released somewhat later.

Page 100 of 103

Glossary of Terms (continued)

 Note: Early releases of P?S/8 are faithful to the original
 keyboard monitor commands of the R-L Monitor System; however,
 all recent releases are consistent with the DIBOL/COS systems.
 Where relevant, documentation of the COS keyboard commands
 also applies to P?S/8.

c) POLY BASIC is a stand-alone BASIC-only operating system for a
 4K PDP-8 including any of several storage devices such as the
 TC01/TC08 DECtape, PDP-12 LINCtape, DF32 and RF08. The POLY
 BASIC source code was originally created on The R-L Monitor
 System by the same students who created the original R-L
 Monitor System while students (just before their employment
 began at DEC in Maynard Mass).

 Note: Since POLY BASIC is a standalone operating system,
 binary output from PAL III is loaded into memory; when the
 system halts, a scratch DECtape is mounted on drive unit 0 to
 allow writing out the components of the POLY BASIC system.

 The internal run-time system and binary output of the POLY
 BASIC compiler are loaded into memory using a Slurp format
 binary loader limited to 4K memory.

 Note: For devices where a virtual loader would be required in
 P?S/8 (due to hardware limitations), POLY BASIC takes
 advantage of an internal buffer known to be available while
 file loading is in progress. (The buffer area is later used
 for dynamic program storage.)

 A minimal distribution cleanup and eventual submission to
 DECUS was accomplished later when the (former) students were
 DEC employees (as opposed to the bulk of the work done earlier
 as students).

 DEC management unfairly exploited this situation and claimed
 the project as DEC intellectual property without any
 compensation to either the students or the school. This
 situation never sat well with certain individuals associated
 with this incident; it was felt at the time that DEC was too
 powerful to lodge any complaints against (and the inherent
 intimidation caused by fear of being fired).

d) EDUSYSTEM 30 is DEC's brazenly commercial release of POLY
 BASIC with little to no modifications to the original
 student project.

e) EDUSYSTEM 15-30 is a specific variant of EDUSYSTEM 30 that
 runs only on the TD8E DECtape. Either 8K of memory or the
 MR8E-C support ROM is required.

Page 101 of 103

Glossary of Terms (continued)

 Note: When the MR8E-C ROM is used, it is located in field 7 of
 memory in locations 77400-77777. As such, the host PDP-8/E
 (or similar) system must support extended memory for either
 configuration. It is believed that, out of expediency, the
 technique of using an internal buffer during Slurp loading is
 deployed in this system despite the ability to implement an
 appropriate hardware-specific version; P?S/8 implements a
 TD8E-specific Slurp format binary loader for the identical
 hardware configurations analogous to other devices such as the
 RX01 which also transfer data solely by program transfer
 techniques.

 7. Three-for-two

This is an informal reference to the method used in certain PDP-8
file systems to pack three bytes of seven (or eight) bits each
into two adjacent 12-bit words within a larger structure (such as
a storage device block or record). This packing scheme is used
inside of OS/8 binary files and also text files in both OS/8 and

 the P?S/8 SHELL environments.

The first character occupies the low-order eight bits of the
first twelve-bit word. The second character occupies the low-
order eight bits of the second twelve-bit word. The third
character is split into the upper-most four bits and the lower-
most four bits. The upper-most four bits are placed into the
four high-order bits of the first 12-bit word; the lower-most
four bits are placed into the four high-order bits of the second
12-bit word.

While several other (less than satisfactory) methods of
implementing three- for-two packing and unpacking have been
devised, clearly the most elegant way is to use co-routines such
as how the author of this document implemented file support in
the OS/8 program Kermit-12. The coding space occupied by both
routines together is slightly less than half of that used by
commonly used routines nominally written for the same purpose in
other OS/8 programs, yet the co-routines are also faster and
have higher overall data throughput. This is one of the few
counter-examples where speed and small size are not in tradeoff
opposition.

 The P?S/8 SHELL file system will store text format files in a
 manner similar to OS/8 with certain considerations as follows:

 a) OS/8 (nearly) always sets the high-order bit of every frame to
 (over) simplify the process of conversion of the data to
 paper-tape frames; however, since this is a trivial
 consideration (and is also often ignored), it is always
 necessary to mask off the high-order bit (which contains no
 useful information) when processing the latest byte.

Page 102 of 103

Glossary of Terms (continued)

 b) All OS/8 files are meant to be terminated with trailing
 Control-Z characters (with the high-order clear); however,

 this convention is often misimplemented with the high-order
 bit inadvertently set; in some cases, files end at the last
 byte of the last block of the file, entirely lacking the
 trailing Control-Z character. The co-routines used are able
 to correct for these occasional file formatting blunders.

 c) P?S/8 SHELL text files will always clear the high-order bit of
 every byte; in special cases, setting the high-order bit will
 be allowed for special formatting purposes using proprietary
 extended character codes beyond the normal seven-bit ASCII

 character set.

 d) P?S/8 SHELL text files will always include trailing Control-Z
 characters with the high-order bit clear. Co-routine

 implementation makes this easy to achieve in minimal code
 space.

 e) P?S/8 SHELL binary files will use Slurp binary loading format
 as is used in the basic P?S/8 TFS file system. Some slurp
 format binary loading or other utilities are best implemented
 using co-routines; three- for-two packing methods play no
 role in Slurp format binary files (which are multiples of
 12-bit words).

 8. Tiny File System (TFS) and the TFS directory

The Tiny File System (TFS) is the primary file format used in the
basic P?S/8 system. Each TFS file is of fixed size allowing the
TFS directory structure to consist of allocatable slots that are
adjacent and cannot overlap.

If a TFS directory filename is modified or deleted, the
underlying storage is not changed (unless an explicit write
operation is performed). This allows files to be easily renamed
as needed.

There are unique advantages to the TFS structure which, for
certain users, requires some measure of orientation and
experience. Once mastered, rapid editing of large projects can
proceed with little additional effort.

Files are loaded into the keyboard monitor edit buffer to modify
the contents. The process is not finalized until appropriate
commands are issued to write the edit buffer contents to a slot
in the TFS directory. This generally means that the same file
slot is reused; as such, there will be no need to access the TFS
directory.

Page 103 of 103

Glossary of Terms (continued)

Note: For those requiring the notion of a file backup, the
updated file can be written to a different TFS directory slot.
Appropriate filename changes can be made later to maintain
ongoing file names. Advanced users are known to pre-allocate
additional directory slots for this purpose.

The TFS directory structure is used only for user-created files,
including the Slurp format binary files produced by P?S/8 PAL
assembly of TFS text files (and/or extended-length text files).
System programs are stored in an independent file structure
elsewhere on the system device and/or other logical device units.

For example, it is expected that PAL assembly projects of nearly
any size will require several TFS files. The contents of
multiple TFS files are concatenated together and passed to P?S/8
PAL (as required) to carry out the current assembly project.

Note: While certain P?S/8 system programs address the associated
line numbers within TFS text files, P?S/8 PAL (and most other
P?S/8 system programs) ignores line number data. When necessary,
extended-length files can be passed to P?S/8 PAL to allow
assembly of vary large source programs. As necessary, the source
file input stream passed to P?S/8 PAL can be a mixture of TFS
text files and extended-length text files.

End of Glossary of Terms
__

[End-of-file]

